Инженерная графика Курс лекций по истории искусства Расширенный конспект лекций по курсу «Физика»

Сетевой уровень как средство построения больших сетей начало

5.3.7. Протокол надежной доставки TCP-сообщений

Протокол IP является дейтаграммным протоколом и поэтому по своей природе не может гарантировать надежность передачи данных. Эту задачу - обеспечение надежного канала обмена данными между прикладными процессами в составной сети -решает протокол TCP (Transmission Control Protocol), относящийся к транспортному уровню.

Протокол TCP работает непосредственно над протоколом IP и использует для транспортировки своих блоков данных потенциально ненадежный протокол IP. Надежность передачи данных протоколом TCP достигается за счет того, что он основан на установлении логических соединений между взаимодействующими процессами. До тех пор пока программы протокола TCP продолжают функционировать корректно, а составная сеть не распалась на несвязные части, ошибки в передаче данных на уровне протокола IP не будут влиять на правильное получение данных.

Протокол IP используется протоколом TCP в качестве транспортного средства. Перед отправкой своих блоков данных протокол TCP помещает их в оболочку IP-пакета. При необходимости протокол IP осуществляет любую фрагментацию и сборку блоков данных TCP, требующуюся для осуществления передачи и доставки через множество сетей и промежуточных шлюзов.

На рис. 5.22 показано, как процессы, выполняющиеся на двух конечных узлах, устанавливают с помощью протокола TCP надежную связь через составную сеть, все узлы которой используют для передачи сообщений дейтаграммный протокол IP.

Рис. 5.22. TCP-соединение создает надежный канал связи между конечными узлами

Порты

Протокол TCP взаимодействует через межуровневые интерфейсы с ниже лежащим протоколом IP и с выше лежащими протоколами прикладного уровня или приложениями.

В то время как задачей сетевого уровня, к которому относится протокол IP, является передача данных между произвольными узлами сети, задача транспортного уровня, которую решает протокол TCP, заключается в передаче данных между любыми прикладными процессами, выполняющимися на любых узлах сети. Действительно, после того как пакет средствами протокола IP доставлен в компьютер-получатель, данные необходимо направить конкретному процессу-получателю. Каждый компьютер может выполнять несколько процессов, более того, прикладной процесс тоже может иметь несколько точек входа, выступающих в качестве адреса назначения для пакетов данных.

Пакеты, поступающие на транспортный уровень, организуются операционной системой в виде множества очередей к точкам входа различных прикладных процессов. В терминологии TCP/IP такие системные очереди называются портами. Таким образом, адресом назначения, который используется протоколом TCP, является идентификатор (номер) порта прикладной службы. Номер порта в совокупности с номером сети и номером конечного узла однозначно определяют прикладной процесс в сети. Этот набор идентифицирующих параметров имеет название сокет (socket).

Назначение номеров портов прикладным процессам осуществляется либо централизованно, если эти процессы представляют собой популярные общедоступные службы (например, номер 21 закреплен за службой удаленного доступа к файлам FTP, a 23 - за службой удаленного управления telnet), либо локально для тех служб, которые еще не стали столь распространенными, чтобы закреплять за ними стандартные (зарезервированные) номера. Централизованное присвоение службам номеров портов выполняется организацией Internet Assigned Numbers Authority (IANA). Эти номера затем закрепляются и опубликовываются в стандартах Internet (RFC 1700).

Локальное присвоение номера порта заключается в том, что разработчик некоторого приложения просто связывает с ним любой доступный, произвольно выбранный числовой идентификатор, обращая внимание на то, чтобы он не входил в число зарезервированных номеров портов. В дальнейшем все удаленные запросы к данному приложению от других приложений должны адресоваться с указанием назначенного ему номера порта.

Протокол TCP ведет для каждого порта две очереди: очередь пакетов, поступающих в данный порт из сети, и очередь пакетов, отправляемых данным портом в сеть. Процедура обслуживания протоколом TCP запросов, поступающих от нескольких различных прикладных служб, называется мультиплексированием. Обратная процедура распределения протоколом TCP поступающих от сетевого уровня пакетов между набором высокоуровневых служб, идентифицированных номерами портов, называется демультиплексированием (рис. 5.23).

Рис. 5.23. Функции протокола TCP no мультиплексированию и демультиплексированию потоков

Сегменты и потоки

Единицей данных протокола TCP является сегмент. Информация, поступающая к протоколу TCP в рамках логического соединения от протоколов более высокого уровня, рассматривается протоколом TCP как неструктурированный поток байтов. Поступающие данные буферизуются средствами TCP. Для передачи на сетевой уровень из буфера «вырезается» некоторая непрерывная часть данных, которая и называется сегментом (см. рис. 5.23). В отличие от многих других протоколов, протокол TCP подтверждает получение не пакетов, а байтов потока.

Не все сегменты, посланные через соединение, будут одного и того же размера, однако оба участника соединения должны договориться о максимальном размере сегмента, который они будут использовать. Этот размер выбирается таким образом, чтобы при упаковке сегмента в IP-пакет он помещался туда целиком, то есть максимальный размер сегмента не должен превосходить максимального размера поля данных IP-пакета, В противном случае пришлось бы выполнять фрагментацию, то есть делить сегмент на несколько частей, чтобы разместить его в IP-пакете,

Соединения

Для организации надежной передачи данных предусматривается установление логического соединения между двумя прикладными процессами. Поскольку соединения устанавливаются через ненадежную коммуникационную систему, основанную на протоколе IP, то во избежание ошибочной инициализации соединений используется специальная многошаговая процедура подтверждения связи.

Соединение в протоколе TCP идентифицируется парой полных адресов обоих взаимодействующих процессов - сокетов. Каждый из взаимодействующих процессов может участвовать в нескольких соединениях.

Формально соединение можно определить как набор параметров, характеризующий процедуру обмена данными между двумя процессами. Помимо полных адресов процессов этот набор включает и параметры, значения которых определяются в результате переговорного процесса модулей TCP двух сторон соединения. К таким параметрам относятся, в частности, согласованные размеры сегментов, которые может посылать каждая из сторон, объемы данных, которые разрешено передавать без получения на них подтверждения, начальные и текущие номера передаваемых байтов. Некоторые из этих параметров остаются постоянными в течение всего сеанса связи, а некоторые адаптивно изменяются.

В рамках соединения осуществляется обязательное подтверждение правильности приема для всех переданных сообщений и при необходимости выполняется повторная передача. Соединение в TCP позволяет вести передачу данных одновременно в обе Стороны, то есть полнодуплексную передачу.

Реализация скользящего окна в протоколе TCP

В рамках установленного соединения правильность передачи каждого сегмента должна подтверждаться квитанцией получателя. Квитирование - это один из традиционных методов обеспечения надежной связи. В протоколе TCP используется частный случай квитирования - алгоритм скользящего окна. Идея этого алгоритма была изложена в главе 2, «Основы передачи дискретных данных».

Особенность использования алгоритма скользящего окна в протоколе TCP состоит в том, что, хотя единицей передаваемых данных является сегмент, окно определено на множестве нумерованных байтов неструктурированного потока данных, поступающих с верхнего уровня и буферизуемых протоколом TCP. Получающий модуль TCP отправляет «окно» посылающему модулю TCP. Данное окно задает количество байтов (начиная с номера байта, о котором уже была выслана квитанция), которое принимающий модуль TCP готов в настоящий момент принять.

Квитанция (подтверждение) посылается только в случае правильного приема данных, отрицательные квитанции не посылаются. Таким образом, отсутствие квитанции означает либо прием искаженного сегмента, либо потерю сегмента, либо потерю квитанции. В качестве квитанции получатель сегмента отсылает ответное сообщение (сегмент), в которое помещает число, на единицу превышающее максимальный номер байта в полученном сегменте. Это число часто называют номером очереди.

На рис. 5.24 показан поток байтов, поступающий на вход протокола TCP. Из потока байтов модуль TCP нарезает последовательность сегментов. Для определенности на рисунке принято направление перемещения данных справа налево. В этом потоке можно указать несколько логических границ. Первая граница отделяет сегменты, которые уже были отправлены и на которые уже пришли квитанции. Следующую часть потока составляют сегменты, которые также уже отправлены, так как входят в границы, определенные окном, но квитанции на них пока не получены. Третья часть потока - это сегменты, которые пока не отправлены, но могут быть отправлены, так как входят в пределы окна. И наконец, последняя граница указывает на начало последовательности сегментов, ни один из которых не может быть отправлен до тех пор, пока не придет очередная квитанция и окно не будет сдвинуто вправо.

Рис. 5.24. Особенности реализации алгоритма скользящего окна в протоколе TCP

Если размер окна равен W, а последняя по времени квитанция содержала значение N, то отправитель может посылать новые сегменты до тех пор, пока в очередной сегмент не попадет байт с номером N+W. Этот сегмент выходит за рамки окна, и передачу в таком случае необходимо приостановить до прихода следующей квитанции.

Надежность передачи достигается благодаря подтверждениям и номерам очереди. Концептуально каждому байту данных присваивается номер очереди. Номер очереди для первого байта данных в сегменте передается вместе с этим сегментом и называется номером очереди для сегмента. Сегменты также несут номер подтверждения, который является номером для следующего ожидаемого байта данных, передаваемого в обратном направлении. Когда протокол TCP передает сегмент с данными, он помещает его копию в очередь повторной передачи и запускает таймер. Когда приходит подтверждение для этих данных, соответствующий сегмент удаляется из очереди. Если подтверждение не приходит до истечения срока, то сегмент посылается повторно.

Выбор времени ожидания (тайм-аута) очередной квитанции является важной задачей, результат решения которой влияет на производительность протокола TCP. Тайм-аут не должен быть слишком коротким, чтобы по возможности исключить избыточные повторные передачи, которые снижают полезную пропускную способность системы. Но он не должен быть и слишком большим, чтобы избежать длительных простоев, связанных с ожиданием несуществующей или «заблудившейся» квитанции.

При выборе величины тайм-аута должны учитываться скорость и надежность физических линий связи, их протяженность и многие другие подобные факторы. В протоколе TCP тайм-аут определяется с помощью достаточно сложного адаптивного алгоритма, идея которого состоит в следующем. При каждой передаче засекается время от момента отправки сегмента до прихода квитанции о его приеме (время оборота). Получаемые значения времени оборота усредняются с весовыми коэффициентами, возрастающими от предыдущего замера к последующему. Это делается с тем, чтобы усилить влияние последних замеров. В качестве тайм-аута выбирается среднее время оборота, умноженное на некоторый коэффициент. Практика показывает, что значение этого коэффициента должно превышать 2. В сетях с большим разбросом времени оборота при выборе тайм-аута учитывается и дисперсия этой величины.

Поскольку каждый байт пронумерован, то каждый из них может быть опознан. Приемлемый механизм опознавания является накопительным, поэтому опознавание номера Х означает, что все байты с предыдущими номерами уже получены. Этот механизм позволяет регистрировать появление дубликатов в условиях повторной передачи. Нумерация байтов в пределах сегмента осуществляется так, чтобы первый байт данных сразу вслед за заголовком имел наименьший номер, а следующие за ним байты имели номера по возрастающей.

Окно, посылаемое с каждым сегментом, определяет диапазон номеров очереди, которые отправитель окна (он же получатель данных) готов принять в настоящее время. Предполагается, что такой механизм связан с наличием в данный момент места в буфере данных.

Варьируя величину окна, можно влиять на загрузку сети. Чем больше окно, тем большую порцию неподтвержденных данных можно послать в сеть. Но если пришло большее количество данных, чем может быть принято программой TCP, данные будут отброшены. Это приведет к излишним пересылкам информации и ненужному увеличению нагрузки на сеть и программу TCP.

С другой стороны, указание окна малого размера может ограничить передачу данных скоростью, которая определяется временем путешествия по сети каждого посылаемого сегмента. Чтобы избежать применения малых окон, получателю данных предлагается откладывать изменение окна до тех пор, пока свободное место не составит 20-40 % от максимально возможного объема памяти для этого соединения. Но и отправителю не стоит спешить с посылкой данных, пока окно не станет достаточно большим. Учитывая эти соображения, разработчики протокола TCP предложили схему, согласно которой при установлении соединения заявляется большое окно, но впоследствии его размер существенно уменьшается.

Если сеть не справляется с нагрузкой, то возникают очереди в промежуточных узлах - маршрутизаторах и в конечных узлах-компьютерах.

При переполнении приемного буфера конечного узла «перегруженный» протокол TCP, отправляя квитанцию, помещает в нее новый, уменьшенный размер окна. Если он совсем отказывается от приема, то в квитанции указывается окно нулевого размера. Однако даже после этого приложение может послать сообщение на отказавшийся от приема порт. Для этого сообщение должно сопровождаться пометкой «срочно». В такой ситуации порт обязан принять сегмент, даже если для этого придется вытеснить из буфера уже находящиеся там данные. После приема квитанции с нулевым значением окна протокол-отправитель время от времени делает контрольные попытки продолжить обмен данными. Если протокол-приемник уже готов принимать информацию, то в ответ на контрольный 'запрос он посылает квитанцию с указанием ненулевого размера окна.

Другим проявлением перегрузки сети является переполнение буферов в маршрутизаторах. В таких случаях они могут централизованно изменить размер окна, посылая управляющие сообщения некоторым конечным узлам, что позволяет им дифференцированно управлять интенсивностью потока данных в разных частях сети.

Выводы

Машиностроительное черчение, инженерная графика, начертательная геометрия. Выполнение контрольной