Лекции по сопромату, теория, практика, задачи

Сопромат
Геометрические характеристики сечений
Моменты инерции сечения
Кручение
Определение напряжений в стержнях
круглого сечения
Деформации и перемещения при кручении валов
Кручение тонкостенных стержней
замкнутого профиля
Статически неопределимые задачи
Рациональные формы сечений при кручении
Определение опорных реакций
Правило знаков для изгибающих моментов
и поперечных сил
Дифференциальное уравнение изогнутой оси
балки и его интегрирование
Расчет статически неопределимых балок
Машиностроительное черчение
ВИДЫ ИЗДЕЛИЙ
Нанесение размеров
Технологические требования
Способы нанесения размеров
Шероховатость поверхности
и её обозначение на чертежах
Правила нанесения надписей,
технических требований и таблиц
ПРАВИЛА ВЫПОЛНЕНИЯ ЧЕРТЕЖЕЙ
ТИПОВЫХ ДЕТАЛЕЙ
Чертежи деталей, получаемых из сортового
материала механической обработкой
Чертёж детали типа "Вал"
ЭСКИЗ ДЕТАЛИ
Эскизы пружин
Эскизы деталей, содержащих шлицы
Особенности составления эскизов деталей
Особенности конструирования деталей,
обработанных резанием
ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ
Определить линию пересечения цилиндра
и прямого кругового конуса

Рассмотрим задачу определения точки
пересечения прямой с поверхностью конуса

ПОСТРОЕНИЕ РАЗВЕРТОК ПОВЕРХНОСТЕЙ
АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ
 

Расчет статически неопределимых балок.

Общие понятия и метод расчета.

   До сих пор мы рассматривали только статически определимые балки, у которых три опорные реакции определялись из условий равновесия. Очень часто, по условиям работы конструкции, оказывается необходимым увеличить число опорных закреплений; тогда мы получаем так называемую статически неопределимую балку.

image001-33.gif

Рис.1. Схемы статически неопределимых балок

   Например, для уменьшения пролета балки АВ на двух опорах (Рис.1, а) можно поставить опору еще посредине, а для уменьшения деформаций балки, защемленной одним концом (Рис.1, б), можно подпереть ее свободный конец.

   Для подбора сечения таких балок, так же как и в рассмотренных ранее задачах, необходимо построить обычным порядком эпюры изгибающих моментов и поперечных сил, а стало быть, определить опорные реакции.

   Во всех подобных случаях число опорных реакций, которые могут возникнуть, превышает число уравнений статики, например, для балок рис.2. Соответственно: четыре, четыре и пять опорных реакций.

image002-33.gif

Рис.2. Механизм появления дополнительных связей

   Поэтому необходимо составить дополнительные уравнения, выражающие условия совместности деформаций, которые вместе с обычными уравнениями равновесия и дадут возможность определить все опорные реакции.

   Определим опорные реакции и построим эпюру моментов для балки, находящейся под действием равномерно распределенной нагрузки q рис.3. Сначала изобразим все реакции, которые по устройству опор могут возникнуть в этой балке. Таких реакций может быть на опоре А три: вертикальная А, горизонтальная image003-32.gifи опорный момент image004-32.gif, на опоре В возможно появление лишь одной реакции В. Таким образом, число опорных реакций на одну больше, чем уравнений статики.

   Одна из реакций является добавочной, как говорят, «лишней» неизвестной. Этот термин прочно укоренился в технической литературе; между тем, принять его можно лишь условно.

image005-32.gif

Рис.3. Исходная расчетная схема статически неопределимой балки.

   Действительно, добавочная реакция и соответствующее ей добавочное опорное закрепление являются «лишними» только с точки зрения необходимости этих закреплений для равновесия балки как жесткого целого. С точки же зрения инженера добавленное закрепление во многих случаях не только не является лишним, а наоборот, позволяет осуществить такую конструкцию, которая без него была бы невозможна. Поэтому мы будем пользоваться термином «лишняя опорная реакция», «лишняя неизвестная» лишь условно.

   Составим все уравнения статики для нашей балки, приравнивая нулю сумму проекций всех сил на направление оси балки, на перпендикуляр к ней, и сумму моментов относительно точки А. Получим систему:

image006-32.gif, image007-32.gifimage008-32.gif

   Из первого уравнения сразу определяется опорная реакция image009-32.gifДля определения трех других остаются лишь два уравнения.

   За лишнюю реакцию можно взять любую из этих трех: попробуем взять реакцию опоры В. В таком случае мы должны считать, что рассматриваемая балка получилась из статически определимой балки АВ, защемленной концом А, у которой потом поставили добавочную опору в точке В. Эта статически определимая балка, которая получается из статически неопределимой при удалении добавочного, лишнего опорного закрепления, называется основной системой. Выбрав какую-либо из реакций за лишнюю неизвестную, мы тем самым выбираем основную систему.

   Попробуем теперь превратить основную систему без опоры В в систему, полностью совпадающую с заданной статически неопределимой балкой (Рис.3).

image010-32.gif

Рис.4. Эквивалентная система

Для этого загрузим ее сплошной нагрузкой q и в точке В приложим лишнюю реакцию В (Рис.4).

   Однако этого мало: в балке, представленной на рис.4, точка В может перемещаться по вертикали под действием нагрузок q и В; между тем, в нашей статически неопределимой балке точка В не имеет этой возможности, она должна совпадать с опорным шарниром. Поэтому, чтобы привести к окончательному совпадению, надо к последней добавить условие, что прогиб точки В основной системы под действием нагрузок q и В должен быть равен нулю:

image011-32.gif

   Это и будет добавочное уравнение, определяющее реакцию В; оно является условием совместности деформаций в рассматриваемом случае: конец В балки не отрывается от опоры.

Решение этого добавочного уравнения возможно несколькими способами.

Способ сравнения деформаций.

   Выполняя решение уравнения image012-32.gif, названного уравнением совместности деформаций, можно рассуждать следующим образом.

   Прогиб точки В основной системы под действием нагрузок q и В складывается из двух прогибов: одного image013-32.gif, вызванного лишь нагрузкой q, и другого image014-31.gif, вызванного реакцией В. Таким образом,

image015-31.gif

(1)

Остается вычислить эти прогибы. Для этого загрузим основную систему одной нагрузкой q (рис.4, а).

image016-30.gif

Рис.4. Расчет прогиба от исходной нагрузки — а) и реакции — б)

Тогда прогиб точки В будет равен:

image017-30.gif

При нагружении основной системы реакцией В (Рис.4,б) имеем:

image018-28.gif

Подставляя эти значения прогибов в уравнение (1), получаем:

image019-28.gif

Отсюда

image020-28.gif

   В этом способе мы сначала даем возможность основной системе деформироваться под действием внешней нагрузки q, а затем подбираем такую силу В, которая бы вернула точку В обратно. Таким образом, мы подбираем величину неизвестной дополнительной реакции В с тем расчетом, чтобы уравнять прогибы от нагрузки q и силы В. Этот способ и называют способом сравнения деформаций.

image021-28.gif

Рис.5. Эпюры поперечных сил и внутренних изгибающих моментов.

Подставляя значение лишней реакции В в уравнения статики, получаем

image022-28.gif

image023-28.gif

Выражение изгибающего момента получаем, рассматривая правую часть балки (Рис.4) и подставляя значение В:

image024-28.gif

Поперечная сила Q выражается формулой

image025-28.gif

   Эпюры моментов и поперечных сил изображены на рис.5. Сечение с наибольшим положительным моментом соответствует абсциссе image026-27.gif, определяемой равенством

image027-27.gifт.е. image028-27.gif

Отсюдаimage029-25.gif соответствующая ордината эпюры моментов, равна:

image030-24.gif