Лекции по сопромату, теория, практика, задачи

Правило знаков для изгибающих моментов и поперечных сил.

Поперечная сила в сечении балки mn (рис. 3.7, а) считается положительной, если равнодействующая внешних сил слева от сечения направлена снизу вверх, а справа - сверху вниз, и отрицательной - в противоположном случае (рис. 3.7, б).

 Правило знаков для изгибающих моментов и поперечных сил

Изгибающий момент в сечении балки, например в сечении mn (рис. 3.8, а), считается положительным, если равнодействующий момент внешних сил слева от сечения направлен по часовой стрелке, а справа - против часовой стрелки, и отрицательным в противоположном случае (рис. 3.8, б). Моменты, изображенные на рис. 3.8, а, изгибают балку выпуклостью вниз, а моменты, изображенные на рис. 3.8, б, изгибают балку выпуклостью вверх. Это можно легко проверить, изгибая тонкую линейку.

3_8.gif

Отсюда следует другое, более удобное для запоминания правило знаков для изгибающего момента. Изгибающий момент считается положительным, если в рассматриваемом сечении балка изгибается выпуклостью вниз. Далее будет показано, что волокна балки, расположенные в вогнутой части, испытывают сжатие, а в выпуклой - растяжение. Таким образом, условливаясь откладывать положительные ординаты эпюры М вверх от оси, мы получаем, что эпюра оказывается построенной со стороны сжатых волокон балки.

Построение эпюр изгибающих моментов и поперечных сил.

Рассмотрим пример построения эпюр поперечных сил Q и изгибающих моментов Mx.

1. Изображаем расчетную схему (рис. 3.9, а).

2. Определяем реакции опор. Первоначально выбираем произвольное направление реакций (рис. 3.9, а)

t3_5.gif

Так как реакция RB с минусом, изменяем выбранное направление на противоположное (рис. 3.9, б), а про минус забываем.

 Построение эпюр изгибающих моментов и поперечных сил

Проверка:

t3_6.gifY = 0,
RA - 2qa + RB - qa = qa - 2qa + 2qa - qa = 0.

3. Расчетная схема имеет три силовых участка.

I участок АС: 0 < z1 < a. Начало координат выбираем в крайней левой точке А. Рассмотрим равновесие отсеченной части бруса (рис. 3.10).

В сечении возникают внутренние усилия:

поперечная сила

Q = qa = const

и изгибающий момент

Mx = qa * z1
при z1 = 0 Mx = 0; при z1 = a Mx = qa2.

II участок CB: 0 < z2 < 2a. Начало координат перенесено в начало участка С (рис. 3.11).

На этом участке

t3_7.gif

при z2 = 0 Q = qa, Mx = -qa2;

при z2 = 2 Q = -qa, Mx = qa2.

3_10.gif3_11.gif

На 2-м участке в уравнении моментов аргумент z2 имеет 2-ю степень, значит эпюра будет кривой второго порядка, т.е. параболой. На этом участке поперечная сила меняет знак (в начале участка +qa, а в конце -qa), значет на эпюре Mx будет экстремум в точке, Q = 0. Определяем координату сечения, в котором экстремальное значение Mx, приравнивая нулю выражение поперечной силы на этом участке.

t3_8.gif

Определяем величину экстремального момента (с учетом знака):

t3_9.gif

III учаток BD: 0 < z3 < a. Начало координат на третьем участке помещено в крайней правой точке (рис. 3.12).

3_12.gif

Здесь Q = qa = const; Mx = -qa*z3; при z3 = 0 Mx = 0; при z3 = a Mx = -qa2.

4. Строим эпюры Q и Mx (рис. 3.13, б и в).

3_13.gif

5. Проверка построения.