Атомная энергетика

Графика
Начерталка

Математика

Лабы

Принцип работы атомных электрических станций Первая в мире АЭС была введена в эксплуатацию в г. Обнинске (СССР) 27 июня 1954 г., о чем сообщило Московское радио. Затем сообщение об успешно завершенных работах по созданию первой промышленной электростанции на атомной энергии было передано зарубежными информационными агентствами, прокомментировано радио и прессой, воспринято как сенсация.

Надежность АЭС В связи с широким строительством АЭС возникают естественные вопросы безопасности их работы и возможных вредных влияний на человека и, в первую очередь, влияний радиоактивных излучений. Радиоактивное излучение опасно для людей, в больших дозах может вызвать заболевание и даже смерть.

КОНЦЕПТУАЛЬНЫЙ ПРОЕКТ КОНСТРУКЦИИ ВЫСОКОТЕМПЕРАТУРНОГО РЕАКТОРА С ТВЕРДЫМ ТЕПЛОНОСИТЕЛЕМ Одним из направлений создания ядерного реактора повышенной безопасности является концепция высокотемпературного реактора с твердым теплоносителем (ВРТТ). Основной принцип работы реактора ВРТТ основывается на охлаждении активной зоны шарообразными теплонесущими частицами из графита с пироуглеродным покрытием диаметром приблизительно один миллиметр. Перенос тепла твердым теплоносителем осуществляется в среде инертного газа при давлении в первом контуре, близком к атмосферному.

Реакторы типа РБМК-1000 Реактор РБМК (реактор большой мощности канальный) получил своё название из-за своей большой мощности. Индекс 1000 означает, что эти реакторы имеют электрическую мощность 1000 МВт при тепловой мощности в 3200 МВт. В реакторах типа РБМК теплоносителем является кипящая вода под большим давлением (около 60 атмосфер). Замедлителем в этих реакторах является графит. Основу конструкции таких реакторов составляют прямоугольные блоки из особо чистого графита.

Реактор РБМК-1000 является реактором с неперегружаемыми каналами, в отличие от реакторов с перегружаемыми каналами, ТВС и технологический канал являются раздельными узлами. К установленным в реактор каналам с помощью неразъемных соединений подсоединены трубопроводы - индивидуальные тракты подвода и отвода теплоносителя. Загружаемые в каналы ТВС крепятся и уплотняются в верхней части стояка канала. Таким образом, при перегрузке топлива не требуется размыкания тракта теплоносителя, что позволяет осуществлять ее с помощью соответствующих перегрузочных устройств без остановок реактора.

При создании таких реакторов решалась задача экономичного использования нейтронов в активной зоне реактора. С этой целью оболочки твэлов и трубы канала изготовлены из слабо поглощающих нейтроны циркониевых сплавов. В период разработки РБМК температурный предел работы сплавов циркония был недостаточно высок. Это определило относительно невысокие параметры теплоносителя в РБМК. Давление в сепараторах равно 7,0 МПа, чему соответствует температура насыщенного пара 284° С. Схема установок РБМК одноконтурная. Пароводяная смесь после активной зоны попадает по индивидуальным трубам в барабаны-сепараторы, после которых насыщенный пар направляется в турбины, а отсепарированная циркуляционная вода после ее смешения с питательной водой, поступающей в барабаны-сепараторы от турбоустановок, с помощью циркуляционных насосов подается к каналам реактора.

Реакторы типа ВВЭР (водо-водяные энергетические реакторы) имеют некоторые конструктивные отличия от реакторов РБМК-1000. Реакторы ВВЭР также как и РБМК имеют электрическую мощность 1000 МВт, но тепловая их мощность немного меньше и составляет 3000 МВт. Реакторы ВВЭР довольно тяжелые и имею массу в несколько сотен тонн. Реакторы ВВЭР также называют корпусными реакторами. В корпусных реакторах применяется, как правило, двух контурная система использования воды. Нагретая до высокой температуры в активной зоне реактора вода поступает в теплообменник, где оставляет свое тепло, отдавая его воде второго контура. Первый и второй контуры отделены друг от друга изоляционным слоем, поэтому вода из первого контура не может попасть во второй. В этом существенное преимущество двухконтурных реакторных систем с точки зрения радиационной безопасности. В легководяных реакторах замедлителем и теплоносителем служит обыкновенная вода.

Водо-водяной энергетический реактор ВВЭР-1000 Принципиальная тепловая схема атомной энергетической установки с реактором ВВЭР-1000. Реакторная установка с ВВЭР-1000 включает в себя главный циркуляционный контур, систему компенсации давления и пассивный узел системы аварийного охлаждения зоны (САОЗ). В состав главного циркуляционного контура входят реактор и четыре циркуляционных петли, каждая из которых включает горизонтальный парогенератор, главный циркуляционный насос и главный циркуляционный трубопровод с условным диаметром 850 мм (Ду 850), соединяющий оборудование петли с реактором. Энергия деления ядерного топлива в активной зоне реактора отводится теплоносителем, прокачиваемым через нее главными циркуляционнными насосами. Из реактора “горячий” теплоноситель по главным циркуляционным трубопроводам поступает в парогенераторы, где отдает тепло котловой воде второго контура и затем главными циркуляционными насосами возвращается в реактор. Вырабатываемый во втором контуре парогенераторов сухой насыщенный пар поступает на турбины турбогенератора. Реактор ВВЭР-1000 Реактор ВВЭР-1000 предназначен для выработки тепловой энергии в составе паропроизводящей установки атомной электростанции с электрической мощностью блока 1000 МВт. По принципу работы он является гетерогенным ядерным энергетическим реактором корпусного типа на тепловых нейтронах с обычной водой в качестве теплоносителя и замедлителя. Реактор состоит из корпуса, в котором размещены - шахта, выгородка, активная зона и блок защитных труб. Сверху на корпус реактора установлен верхний блок с приводами системы управления и защиты (СУЗ). Теплоноситель поступает в реактор через четыре нижних патрубков корпуса реактора, проходит вниз по кольцевому зазору между шахтой и корпусом ректора, затем через отверстия в днище шахты поступает в активную зону, где нагревается за счет тепла ядерной реакции и через верхние отверстия в шахте и верхние патрубки корпуса выходит из реактора. Регулирование мощности реактора осуществляется перемещением в активной зоне органов регулирования – пучков поглощающих стержней, подвешенных на специальных траверсах.

Принцип работы теплоэлектрических преобразователей В большинстве случаев нас в виде конечного вида энергии интересует электроэнергия. Наиболее распространенные сегодня  электростанции (ТЭЦ, АЭС) вырабатывают электроэнергию путём многих последовательных ступеней преобразования, причём всякая ступень преобразования энергии характеризуется большими или меньшими потерями, и ясно, что число промежуточных ступеней преобразования желательно по возможности уменьшить до минимума.

Характеристики современных термоэлектропреобразователей. Работы в области термоэлектрических преобразователей получили достаточно широкий размах начиная с начала 60-х годов ХХ века в СССР, США и ряде других стран. Интерес к этим преобразователям объясняется тем, что подобные методы преобразования энергии упрощают схему установок, исключают промежуточные этапы превращения энергии и позволяют создать легкие компактные установки.

Проект второй очереди Нововоронежской АЭС (энергоблоки 3 и 4) разрабатывался в 60-х годах. Разработка проектно-конструкторской документации была осуществлена на основе общепромышленных нормативов, специальные нормы и правила существовали только для таких специфических аспектов использования атомной энергетики, как радиационная защита («Санитарные правила работы с радиоактивными веществами и другими источниками ионизирующих излучений» СП-333-60; «Санитарные правила проектирования атомных станций» и «Нормы радиационной безопасности» НРБ-69).

Повышение безопасности энергоблока №4 НВАЭС и надёжности систем, обеспечивающих охлаждение активной зоны при авариях с потерей теплоносителя (LOCA).

Повышение безопасности энергоблока №4 НВАЭС за счет использования систем безопасности 3 блока

Машиностроительное черчение, инженерная графика, начертательная геометрия. Выполнение контрольной