Физические принципы атомной энергетики

Атомная энергетика
Описание атомной станции малой мощности
Описание реакторной установки
Параметры реакторной установки
Основные решения по конструкции активной зоны
Парогенератор обеспечивает выработку пара
Компенсатор давления
Описание систем реакторной установки
Системы аварийной остановки реактора
Система аварийного охлаждения активной зоны
Локализующие системы безопасности
Обеспечивающие системы безопасности
Технологическая схема сборки твэла
Ионизирующие излучения
Принцип работы атомных электрических станций
Надежность АЭС
Реакторы типа РБМК-1000
Реакторы типа ВВЭР
(водо-водяные энергетические реакторы)
Принцип работы теплоэлектрических
преобразователей
Характеристики
современных термоэлектропреобразователей
.
Проект второй очереди Нововоронежской АЭС
Повышение безопасности энергоблока №4 НВАЭС
Особенности ядерных реакторов
Основные этапы ядерного топливного цикла

Топливо ядерных реакторов

Парогенератор АЭС реактора БН-600.
Задача: найти расход теплоносителя,
тепловую мощность
Задача: рассчитать толщину стенок труб
теплопередающей поверхности
Задача: рассчитать геометрические
размеры парогенератора.
ОБЩИЕ СВЕДЕНИЯ И ТИПЫ ЭЛЕКТРОСТАНЦИЙ

Парогенератор.

Гидроэлектрические станции
 

Особенности ядерных реакторов

Ядерный реактор - устройство для осуществления управляемой реакции деления и преобразования выделившейся при делении энергии в тепловую для дальнейшего использования.

Главным условием нормальной работы ядерного реактора является контролируемый процесс деления урана и отвод избыточного тепла, образующегося при этом.

При работе реактора в тепловыделяющих элементах (твэлах), а также во всех его конструктивных элементах в различных количествах выделяется теплота. Это связано прежде всего с торможением осколков деления, бета- и гамма- излучением их, а также ядер, испытывающих взаимодействие с нейронами, и, наконец, с замедлением быстрых нейронов.

От реактора теплота отводится циркулирующим через него теплоносителем. Характерной особенностью реактора является остаточное тепловыделение после прекращения реакции деления, что требует отвода теплоты в течение длительного времени после остановки реактора.

Главным элементом ядерного реактора является активная зона. В нем размещается ядерное топливо и осуществляется цепная реакция деления. Активная зона представляет собой совокупность определенным образом размещенных тепловыделяющих элементов, содержащих ядерное топливо. В реакторах на тепловых нейтронах используется замедлитель. Через активную зону прокачивается теплоноситель, охлаждающий тепловыделяющие элементы. В некоторых типах реакторов роль замедлителя и теплоносителя выполняет одно и то же вещество, например обычная или тяжелая вода.

Для управления работой реактора в активную зону вводятся регулирующие стержни из материалов, имеющих большое сечение поглощения нейтронов. Активная зона энергетических реакторов окружена отражателем нейтронов - слоем материала замедлителя для уменьшения утечки нейтронов из активной зоны. Кроме того, благодаря отражателю происходит выравнивание нейтронной плотности и энерговыделения по объему активной зоны, что позволяет при данных размерах зоны получить большую мощность, добиться более равномерного выгорания топлива, увеличить продолжительность работы реактора без перегрузки топлива и упростить систему теплоотвода. Отражатель нагревается за счет энергии замедляющихся и поглощаемых нейтронов и гамма-квантов, поэтому предусматривается его охлаждение. Активная зона, отражатель и другие элементы размещаются в герметичном корпусе или кожухе, обычно окруженном биологической защитой.

Реакторы классифицируют по уровню энергии нейтронов, участвующих в реакции деления, по принципу размещения топлива и замедлителя, целевому назначению, виду замедлителя и теплоносителя и их физическому состоянию.

По уровню энергетических нейтронов: реакторы могут работать на быстрых нейтронах и на тепловых и в соответствии с этим делятся на ректоры на тепловых и быстрых нейтронах. В реакторе на тепловых нейтронах большая часть деления ядер происходит при поглощении ядрами делящихся изотопов тепловых нейтронов. Реакторы, в которых деление ядер производится в основном нейтронами с энергией больше 0,5 МэВ, называются реакторами на быстрых нейтронах.

В активной зоне теплового реактора должен находиться замедлитель - вещество, ядра которого имеют малое массовое число. Необходимость замедлителя нейтронов вызывается тем, что эффективные сечения деления ядер топлива намного больше при малых значениях энергии нейтронов, чем при больших. В качестве замедлителя применяют графит, тяжелую или легкую воду, бериллий, органические жидкости. Тепловой реактор может работать даже на естественном уране, если замедлителем служит тяжелая вода или графит. При других замедлителях необходимо использовать обогащенный уран. От степени обогащения топлива зависят необходимые критические размеры реактора, с увеличением степени обогащения они меньше. Существенным недостатком реакторов на тепловых нейтронах является потеря медленных нейтронов в результате захвата их замедлителем, теплоносителем, конструкционными материалами и продуктами деления. Поэтому в таких реакторах в качестве замедлителя, теплоносителя и конструкционных материалов необходимо использовать вещества с малыми сечениями захвата медленных нейтронов.

В активной зоне реактора на быстрых нейтронах размещаются твэлы с высокообогащенным топливом. Активная зона окружается зоной воспроизводства, состоящей из твэлов, содержащих топливное сырье (обедненный уран, торий). Вылетающие из активной зоны нейтроны захватываются в зоне воспроизводства ядрами топливного сырья, в результате образуется новое ядерное топливо. Особым достоинством быстрых реакторов является возможность организации в них расширенного воспроизводство ядерного топлива, т. е. одновременно с выработкой энергии производить вместо выгоревшего ядерного топлива новое. Для быстрых реакторов не требуется замедлитель, а теплоноситель не должен замедлять нейтроны. Для обеспечения высокой концентрации ядерного топлива необходимо достижение максимального тепловыделения на единицу объема активной зоны. Это можно осуществить только с помощью жидкометаллических теплоносителей, например натрия, калия или энергоемких газовых теплоносителей, обладающих наилучшими теплотехническими и теплофизическими характеристиками, таких как гелий и диссоциирующие газы. В качестве теплоносителя можно использовать и пары воды. Паразитный захват быстрых нейтронов ядрами конструкционных материалов и продуктов деления крайне незначительный, поэтому для быстрых реакторов существует широкий выбор конструкционных материалов, позволяющих повысить надежность активной зоны. Следовательно, в них можно достичь высокой степени выгорания делящихся веществ.

В зависимости от замедляющего вещества реакторы делятся на графитовые, легководные и тяжеловодные. По виду теплоносителя гетерогенные реакторы бывают легководные, тяжеловодные, газовые и жидкометаллические. Жидкие теплоносители внутри реактора могут быть в однофазном и двухфазном состояниях. В первом случае теплоноситель внутри реактора не кипит, а во втором - кипит.

Реакторы, в активной зоне которых температура жидкого теплоносителя ниже температуры кипения, называются реакторами с водой под давлением, а реакторы, внутри которых происходит кипение теплоносителя, - кипящими.

В зависимости от используемого замедлителя и теплоносителя гетерогенные реакторы выполняются по разным схемам. В России основные типы ядерных энергетических реакторов – водо-водяные и водографитовые. По конструктивному исполнению реакторы подразделяются на корпусные и канальные. В корпусных реакторах давление теплоносителя несет корпус. Внутри корпуса реактора течет общий поток теплоносителя. В канальных реакторах теплоноситель подводится к каждому каналу с топливной сборкой раздельно. Корпус реактора не нагружен давлением теплоносителя, это давление несет каждый отдельный канал.

В зависимости от назначения ядерные реакторы бывают энергетические, конверторы и размножители, исследовательские и многоцелевые, транспортные и промышленные.

Ядерные энергетические реакторы используются для выработки электроэнергии на атомных электростанциях, в судовых энергетических установках, на атомных теплоэлектроцентралях (АТЭЦ), а также на атомных станциях теплоснабжения (АСТ).

Исследовательские реакторы служат для исследований процессов взаимодействия нейтронов с веществом, изучения поведения реакторных материалов в интенсивных полях нейтронного и гамма-излучений, радиохимических и биологических исследований, производства изотопов, экспериментального исследования физики ядерных реакторов.

Многоцелевыми называются реакторы, служащие для нескольких целей, например для выработки энергии и получения ядерного топлива.

Типичные схемы энергетических реакторов на тепловых нейтронах (водо-водяных с водой под давлением и канальных уран-графитовых) приведены на рисунках.

Типичные схемы энергетических реакторов на тепловых нейтронах

1 – Реактор;

2 – Парогенератор;

3 – Циркуляционный насос

конструкцич РБМК

Ядерная реакция протекает в активной зоне реактора, которая заполнена замедлителем и пронизана стержнями, содержащими обогащенную смесь изотопов урана с повышенным содержанием урана-235 (до 3%). В активную зону вводятся регулирующие стержни, содержащие кадмий или бор, которые интенсивно поглощают нейтроны. Введение стержней в активную зону позволяет управлять скоростью цепной реакции. Активная зона охлаждается с помощью прокачиваемого теплоносителя, в качестве которого может применяться вода или металл с низкой температурой плавления (например, натрий, имеющий температуру плавления 98°C). В парогенераторе теплоноситель передает тепловую энергию воде, превращая ее в пар высокого давления. Пар направляется в турбину, соединенную с электрогенератором. Из турбины пар поступает в конденсатор. Во избежание утечки радиации контуры теплоносителя I и парогенератора II работают по замкнутым циклам.

Основной конструктивной деталью активной зоны является твэл, в значительной мере определяющий ее надежность, размеры и стоимость. В энергетических реакторах, как правило, используются стержневые твэлы с топливом в виде прессованных таблеток двуокиси урана, заключенных в оболочку из стали или циркониевого сплава. Твэлы для удобства собираются в тепловыделяющие сборки (ТВС), которые устанавливаются в активной зоне ядерного реактора.

В твэлах происходит генерация основной доли (более 90%) тепловой энергии и передача ее теплоносителю.

В результате деления, тепловая энергия выделяется в таблетке, которая нагревается. За счет теплопроводности тепловая энергия предается на оболочку. Теплоноситель, омывая оболочку, снимает тепловую энергию и нагревается. Аккумулируя выделившуюся в результате деления в ядерном топливе энергию, поток теплоносителя выносит ее за пределы активной зоны для производства пара.

Турбина атомной электростанции является тепловой машиной, определяющей в соответствии со вторым законом термодинамики общую эффективность станции. У современных атомных электростанций коэффициент полезного действия приблизительно равен 1/3. Следовательно, для производства 1000 МВт электрической мощности тепловая мощность реактора должна достигать 3000 МВт. 2000 МВт должны уноситься водой, охлаждающей конденсатор. Это приводит к локальному перегреву естественных водоемов и последующему возникновению экологических проблем.

Однако главная проблема состоит в обеспечении полной радиационной безопасности людей, работающих на атомных электростанциях, и предотвращении случайных выбросов радиоактивных веществ, которые в большом количестве накапливаются в активной зоне реактора. При разработке ядерных реакторов этой проблеме уделяется большое внимание. Тем не менее, после аварий на некоторых АЭС, в частности на АЭС в Пенсильвании (США, 1979 г.) и на Чернобыльской АЭС (1986 г.), проблема безопасности ядерной энергетики встала с особенной остротой.

Большой практический интерес представляют реакторы, работающие без замедлителя на быстрых нейтронах. В таких реакторах ядерным горючим является обогащенная смесь, содержащая не менее 15% изотопа урана-235. Преимущество реакторов на быстрых нейтронах состоит в том, что при их работе ядра урана-238, поглощая нейтроны, посредством двух последовательных β–-распадов превращаются в ядра плутония, которые затем можно использовать в качестве ядерного топлива. Коэффициент воспроизводства таких реакторов достигает 1,5, то есть на 1 кг урана-235 получается до 1,5 кг плутония. В обычных реакторах также образуется плутоний, но в гораздо меньших количествах.

Первый ядерный реактор был построен в 1942 году в США под руководством Э. Ферми. В нашей стране первый реактор был построен в 1946 году под руководством И.В. Курчатова.

В 1954 г. в России была пущена первая в мире атомная электростанция (АЭС) мощностью 5 МВт (г. Обнинск). К 80-м годам прошлого столетия в мире насчитывалось ~ 300 действующих ядерных реакторов общей установленной мощностью ~ 200 ГВт (эл.). Ядерная энергетика производила около 10% общемирового количества электроэнергии.

К концу 2007 года в 32-х странах мира действовали 439 ядерных энергетических реакторов общей установленной мощностью 371,7 ГВт (э). Ядерная доля в электрической генерации в мире составила 17%.

Ближайшие перспективы мировой ядерной энергетики характеризуются тем, что в двенадцати странах строится 30 ядерных энергоблоков общей мощностью около 23,4 ГВт (э). Еще около четырех десятков стран официально заявили о намерениях создать ядерный сектор в своей национальной энергетике.

В России сегодня эксплуатируются 31 ядерный энергоблок общей установленной электрической мощностью 23,2 ГВт. Все ядерные энергоблоки, включая быстрый реактор БН-600, работают на обогащенном урановом топливе.

Атомная энергетика