Первый и второй замечательные пределы

Дифференциальное исчисление функции одной переменной

Применение производной к исследованию функций

Интервалы монотонности. Экстремумы

Функция у = f (х) называется возрастающей (убывающей) на некотором промежутке, если для любых значений x2>x1 этого промежутка выполняется условие f(x2) > f(x1)(f (x2) < f (x1)).

Функция у = f(х) имеет максимум (минимум) в точке x0, если существует такая окрестность точки x0, что для всех x, принадлежащих этой окрестности, выпол­няется условие f(х) < f(х0) (f (х) > f(х0), х¹ х0.

Максимумы и минимумы функции называются ее экстремумами.

Интервал, на котором функция возрастает или убывает, называется интервалом монотонности функции.

Теорема 1. (необходимое условие монотонности функции). Если дифференцируе­мая в интервале (а, b) функция у = f (х) возрастает (убывает) на этом интервале, то ее производная в каждой точке (а, b) . Степенная функция Показательная функция Математика курс лекций

Доказательство. Пусть у = f (х) – дифференцируема и возрастает на (а, b). Пусть точки х и х+х принадлежат (а, b). Если >0, то f(x+) > f(x); если <0, то f (x+ ) < f(x). В обоих случаях > 0. Переходя к пределу в последнем неравенстве при 0 и учитывая, что функция дифференцируема, получаем .

Аналогично доказывается теорема в случае убывающей функции. Рекомендуем сделать это самостоятельно.

Теорема ( достаточное условие монотонности функции). Если непрерывная на отрезке [а, b] функция у = f(х) в каждой точке интервала (а, b) имеет положи­тельную (отрицательную) производную, то эта функция возрастает (убывает) на отрезке [а, b].

Выпуклость и вогнутость графика функции

Точки перегиба График дифференцируемой функции у = f(x) называется выпуклым (вогнутым) в интервале (а,b), если он расположен ниже (выше) любой своей касательной на этом интервале. Теорема ( достаточный признак существования точки перегиба). Если вторая производная непрерывной функции меняет знак при переходе аргумента через точку х0, то точка (х0; f(х0)) является точкой перегиба графика функции. Асимптотой графика функции у = f(x) называется прямая, расстояние от которой до текущей точки графика функции стремится к нулю при неограниченном удалении этой точки от начала координат.


Примеры решения и оформления задач контрольной работы