Высшая математика - лекции , примеры решения задач

Элементы линейной алгебры

Пример 10. Вычислить произведение матриц

и .

Решение. Согласно определению произведение матриц получаем так: умножаем элементы первой строки матрицы A на соответствующие элементы первого столбца матрицы B, произведения складываем и ставим в первую строку и первый столбец матрицы-произведения. Умножаем далее элементы первой строки матрицы A на элементы второго столбца матрицы B, произведения складываем и ставим в первую строку и второй столбец матрицы-произведения и т.д. Линии второй степени Математика лекции задачи

Курс лекций по математике Вывод уравнения колебания струны Решение дифференциальных уравнений

Решение. Согласно определению произведение матриц получаем так: умножаем элементы первой строки матрицы A на соответствующие элементы первого столбца матрицы B, произведения складываем и ставим в первую строку и первый столбец матрицы-произведения. Умножаем далее элементы первой строки матрицы A на элементы второго столбца матрицы B, произведения складываем и ставим в первую строку и второй столбец матрицы-произведения и т.д. Матрицу, все элементы которой равны нулю, мы будем называть нулевой .

Метод понижения порядка определителя основан на обращении всех, кроме одного, элементов определителя в нуль с помощью свойств определителей. Метод приведения к треугольному видузаключается в таком преобразовании данного определителя, когда все элементы его, лежащие по одну сторону одной из его диагоналей, становятся равными нулю. Суммой матриц размера называется матрица того же размера, каждый элемент которой равен сумме соответственных элементов матриц A и B:

Пример . Пусть . Найти значение многочлена

Квадратная матрица называется невырожденной (неособенной), если её определитель отличен от нуля, и вырожденной (особенной), если определитель её равен нулю.

Рассмотрим матрицу,составленную из алгебраических дополнений к элементам матрицы А и называемую присоединенной к матрице А. Отметим, что алгебраические дополнения к элементам квадратной матрицы находят так же, как к элементам ее определителя. В присоединенной матрице алгебраические дополнения элементов строки стоят в столбце с таким же номером.

Пример. Найти матрицу, обратную для матрицы


Решение типового варианта контрольной работы