Приложения определённого интеграла к геометрическим вычислениям Площадь поверхности вращения

Курс лекций Приближённые вычисления с помощью дифференциала

Формулу

 

$\displaystyle f(x)-f(x^0)=df(x^0;dx)+{\alpha}(x^0;dx),$

задающую определение дифференциала, можно записать в виде приближённого равенства

 

$\displaystyle f(x)-f(x^0)\approx df(x^0;dx),$

если считать (при малых $ \vert dx\vert$ ) значение бесконечно малой величины $ {\alpha}(x^0;dx)$ много меньшим, чем $ \vert dx\vert$ . Перенося $ f(x^0)$ в правую часть, получаем:

 

$\displaystyle f(x)\approx f(x^0)+df(x^0;dx),$

где $ x=x^0+dx$ . С учётом выражения дифференциала через частные производные, находим, что

 

$\displaystyle f(x^0+dx)\approx f(x^0)+\frac{\partial f}{\partial x_1}(x^0)dx_1+\ldots+\frac{\partial f}{\partial x_n}(x^0)dx_n.$

Эту формулу можно применять для приближённого вычисления значений функции $ f$ в точках $ x=x^0+dx$ , если известны значения $ f$ и её частных производных $ \displaystyle{\frac{\partial f}{\partial x_i}}$ в точке $ x^0$ .

   

Уравнение прямой в отрезках.

 Если в общем уравнении прямой Ах + Ву + С = 0 С ¹ 0, то, разделив на –С, получим: или

, где

 Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

 Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.

 С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

  Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем, то получим

xcosj + ysinj - p = 0 –

нормальное уравнение прямой.

 Знак ± нормирующего множителя надо выбирать так, чтобы m×С < 0.

р – длина перпендикуляра, опущенного из начала координат на прямую, а j - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Функции нескольких переменных и их дифференцирование