Высшая математика теория и решение задач математический анализ

 

Признаки Даламбера и Коши для знакопеременных рядов.

Пусть - знакопеременный ряд.

  Признак Даламбера. Если существует предел , то при r<1 ряд  будет абсолютно сходящимся, а при r>1 ряд будет расходящимся. При r=1 признак не дает ответа о сходимости ряда.

 

  Признак Коши. Если существует предел , то при r<1 ряд  будет абсолютно сходящимся, а при r>1 ряд будет расходящимся. При r=1 признак не дает ответа о сходимости ряда.

 Предельный анализ в экономике - совокупность приемов исследования изменяющихся величин затрат или результатов при изменении объемов производства, потребления и т.п. на основе анализа их предельных значений

Свойства абсолютно сходящихся рядов.

  1) Теорема. Для абсолютной сходимости ряда необходимо и достаточно, чтобы его можно было представить в виде разности двух сходящихся рядов с неотрицательными членами.

 

  Следствие. Условно сходящийся ряд является разностью двух расходящихся рядов с неотрицательными стремящимися к нулю членами.

 

  2) В сходящемся ряде любая группировка членов ряда, не изменяющая их порядка, сохраняет сходимость и величину ряда.

 

3) Если ряд сходится абсолютно, то ряд, полученный из него любой перестановкой членов, также абсолютно сходится и имеет ту же сумму.

 

Перестановкой членов условно сходящегося ряда можно получить условно сходящийся ряд, имеющий любую наперед заданную сумму, и даже расходящийся ряд.

 

  4) Теорема. При любой группировке членов абсолютно сходящегося ряда (при этом число групп может быть как конечным, так и бесконечным и число членов в группе может быть как конечным, так и бесконечным) получается сходящийся ряд, сумма которого равна сумме исходного ряда.

 

  5) Если ряды и  сходятся абсолютно и их суммы равны соответственно S и s, то ряд, составленный из всех произведений вида  взятых в каком угодно порядке, также сходится абсолютно и его сумма равна S×s - произведению сумм перемножаемых рядов.

  Если же производить перемножение условно сходящихся рядов, то в результате можно получить расходящийся ряд.