Высшая математика теория и решение задач Дифференцирование

Таким образом, в соответствии с доказанной теоремой, для решения линейного неоднородного дифференциального уравнения необходимо найти общее решение соответствующего однородного уравнения и каким-то образом отыскать одно частное решение неоднородного уравнения. Обычно оно находится подбором.

 

  На практике удобно применять метод вариации произвольных постоянных .

Для этого сначала находят общее решение соответствующего однородного уравнения в виде:

Затем, полагая коэффициенты Ci функциями от х, ищется решение неоднородного уравнения:

 Можно доказать, что для нахождения функций Ci(x) надо решить систему уравнений:

 

 

Пример. Решить уравнение

Решаем линейное однородное уравнение

Решение неоднородного уравнения будет иметь вид:

Составляем систему уравнений:

Решим эту систему:

 

Из соотношения  найдем функцию А(х).

 

Теперь находим В(х).

Подставляем полученные значения в формулу общего решения неоднородного уравнения:

Окончательный ответ:

Таким образом, удалось избежать нахождения частного решения неоднородного уравнения методом подбора.

Вообще говоря, метод вариации произвольных постоянных пригоден для нахождения решений любого линейного неоднородного уравнения. Но т.к. нахождение фундаментальной системы решений соответствующего однородного уравнения может быть достаточно сложной задачей, этот метод в основном применяется для неоднородных уравнений с постоянными коэффициентами.