аквариумные кормушки автоматические

Высшая математика теория и решение задач Дифференцирование

 

Обыкновенные дифференциальные уравнения

  Решение различных геометрических, физических и инженерных задач часто приводят к уравнениям, которые связывают независимые переменные, характеризующие ту ил иную задачу, с какой – либо функцией этих переменных и производными этой функции различных порядков.

 В качестве примера можно рассмотреть простейший случай равноускоренного движения материальной точки. лекции, задачи Векторное поле. Дивергенция. Ротор. Основы математического анализа

 Известно, что перемещение материальной точки при равноускоренном движении является функцией времени и выражается по формуле:

 В свою очередь ускорение a является производной по времени t от скорости V, которая также является производной по времени t от перемещения S. Т.е.

 

Тогда получаем:  - уравнение связывает функцию f(t) с независимой переменной t и производной второго порядка функции f(t).

 

 

  Определение. Дифференциальным уравнением называется уравнение, связывающее независимые переменные, их функции и производные (или дифференциалы) этой функции.

 Определение. Если дифференциальное уравнение имеет одну независимую переменную, то оно называется обыкновенным дифференциальным уравнением, если же независимых переменных две или более, то такое дифференциальное уравнение называется дифференциальным уравнением в частных производных.

  Определение. Наивысший порядок производных, входящих в уравнение, называется порядком дифференциального уравнения.

  Пример.

 - обыкновенное дифференциальное уравнение 1 – го порядка. В общем виде записывается .

 - обыкновенное дифференциальное уравнение 2 – го порядка. В общем виде записывается

 - дифференциальное уравнение в частных производных первого порядка.

  Определение. Общим решением дифференциального уравнения называется такая дифференцируемая функция y = j(x, C), которая при подстановке в исходное уравнение вместо неизвестной функции обращает уравнение в тождество.