Примеры решения задач контрольной работы

Графика
Начерталка

Математика

Лабы

Основные представления об электричестве. Ток и напряжение – параметры математических моделей электроприборов. Энергия и мощность – почувствуйте разницу между физиками и электротехниками. 3 великих элемента – резистор, индуктивность и конденсатор, их линейность и нелинейность. Закон Ома. Источники электрической энергии и их возможности. Идеальные модели источников. Составляем принципиальные схемы электроприборов и их математические модели. Законы или правила Кирхгофа. Делители напряжений и токов. Возможные методы упрощения систем уравнений (метод узловых потенциалов и эквивалентного источника).

Цепи постоянного тока. Задача. Определить ЭДС генератора его внутреннее сопротивление, если при мощности нагрузки Р1=2,7кВт напряжение на зажимах генератора U=225В, при мощности Р2=1,84кВт напряжение U=230В.

Правила Кирхгофа Обобщенный закон Ома для произвольного участка цепи: произведение силы тока I на сопротивление R участка цепи равно алгебраической сумме падения потенциала (j1 – j2 на этом участке и ЭДС E всех источников электрической энергии, включенных на данном участке цепи: .

Законы постоянного тока

Волновая оптика В настоящее время волновая оптика является частью общего учения о распространении волн. При изучении явлений интерферен­ции, дифракции, объясняемых с позиций волновой_ природы света, студент должен обратить внимание на общность этих явлений для волн любой природы. Но световые волны имеют специфические особенности: когерентность, монохроматичность, которые обуслов­лены конечной длительностью свечения отдельного атома.

Методика решения задач по кинематике Каждая физическая задача имеет свои особенности. Поэтому при решении любых физических задач, в том числе и кинематических, полезно придерживаться следующего порядка выполнения основных действий. Внимательно прочитав задачу, необходимо выяснить заданные условия и какие параметры необходимо определить. Кратко записать основные значения заданных величин, все внесистемные единицы перевести в систему СИ. Выяснить по условию задачи характер движения. Сделать схематический чертеж, отображающий описанное в задаче движение. Изобразить на нем траекторию движения, векторы скорости, ускорения, перемещения. Выбрать систему координат, связанную с телом отсчета, показать положительное направление координатных осей. Координатные оси выбирают так, чтобы проекции векторов на них выражались, возможно, более простым образом

Магнитное поле в веществе. Гипотеза Ампера о молекулярных токах. Вектор намагничивания. Различные вещества в той или иной степени способны к намагничиванию: то есть под действием магнитного поля, в которое их помещают, приобретать магнитный момент. Одни вещества намагничиваются сильнее, другие слабее. Будем называть все эти вещества магнетиками.

Основы электронной теории магнетизма. Магнитные моменты атомов и молекул. Атомы всех веществ состоят из положительно заряженного ядра и движущихся вокруг него отрицательно заряженных электронов. Каждый движущийся по орбите электрон образует круговой ток силы , – частота обращения электрона вокруг ядра

Пример вычисления индуктивности. Индуктивность соленоида

Электромагнитные волны. Из уравнений Максвелла следует, что если возбудить с помощью зарядов переменное электрическое или магнитное поле, в окружающем пространстве возникнет последовательность взаимных превращений электрического и магнитного полей, распространяющихся в виде электромагнитной волны. Для однородной нейтральной (ρ=0) и непроводящей () среды с постоянными проницаемостями ε и μ, волновое уравнение, описывающее электромагнитную волну, распадается на два независимых векторных уравнения соответственно для электрического  и магнитного полей:  , .

Поляризация света Луч света последовательно проходит через два николя, главные плоскости которых образуют между собой угол j = 40°. Принимая, что коэффициент поглощения k каждого николя равен 0,15, найти, во сколько раз луч, выходящий из второго николя, ослаблен по сравнению с лучом,  падающим на первый николь.

Машиностроительное черчение, инженерная графика, начертательная геометрия. Выполнение контрольной