Основы вычислительных систем Курс лекций начало

 

6.2. Моноканалы

 

Моноканал ЛВС состоит из канала передачи данных и сетевых адаптеров, сопрягающих ЭВМ с каналом (см. рис. 6.3).

Каналы передачи данных. Канал передачи данных состоит из кабеля, по которому передаются сигналы, являющиеся носителями двоичных значении 0 и 1, последовательно передаваемых  по каналу,

 

Таблица 6.1. Характеристики кабелей

Тип кабеля

Скорость передачи данных,
Мбит/с, на расстояние

Стоимость (в условных единицах)

Помехоустой-чивость

180 м

600 м

1900 м

Экранированные пары:

 

 

 

 

 

с индивидуальной экранировкой пары

1

0,3

0,1

1-6

отличная

с общей экранировкой пар

2

0,35

0,15

1-3

удовлетвори-тельная

Экранированные пары, 100 Ом, с индивидуальной экранировкой пары

3,5

0,5

0,15

3-11

отличная

Коаксиальный кабель:

 

 

 

 

 

75 ОМ; 6,35 мм

7

1,8

0,6

0,4

отличная

75 ОМ; 12,7 мм

12

2,5

1,0

0,7

отличная

93 Ом

15

5,0

0,8

0,8

хорошая

Волоконно-оптическая линия:

 

 

 

 

 

с плавным профилем показателя преломления и полосой пропускания

 

 

 

 

 

200 МГц

2056

518

207

2,1

отличная

600 МГц

6027

1512

615

3,5

отличная

со ступенчатым профилем показателя преломления

196

49

20

2,1

отличная

 

Рис.. 6.5. Подключение адаптеров к магистральному каналу

 

Для связи между системами ЛВС используются три типа кабелей: экранированные пары проводов, коаксиальные кабели и волоконно-оптические линии (табл. 6.1). Как видно из таблицы, пропускная способность кабеля уменьшается примерно пропорционально его длине, т. е. с увеличением длины кабеля в 10 раз пропускная способность уменьшается примерно во столько же раз. Помехоустойчивость канала также уменьшается с увеличением его длины. При отсутствии источников сильных электромагнитных помех уровень помехоустойчивости пар и коаксиальных кабелей при длине 102 м не ниже 10-8 – 10-9 искажений на бит передаваемых данных. Волоконно-оптические линии нечувствительны к электромагнитным помехам и не являются источниками электромагнитного излучения. Экранированные пары применяются в каналах с пропускной способностью до 1 Мбит/с, а коаксиальные кабели – в каналах с пропускной способностью 1–10 Мбит/с. Волоконно-оптические линии используются для создания каналов со сверхвысокой пропускной способностью– 10– 100 Мбит/с, а также в бортовых и производственных системах, работающих в условиях сильных электромагнитных помех.

Схемы подключения сетевых адаптеров к каналу на основе экранированных пар и коаксиального кабеля приведены на рис. 6.5, а и б соответственно. На концах сегментов витой пары и коаксиального кабеля устанавливаются схемы согласования, состоящие из резисторов. Подключение адаптеров производится через механический разъем, от которого отводится к адаптеру сегмент кабеля ограниченной длины – обычно до 10–20 м.

Волоконно-оптический канал (рис. 6.6) строится из сегментов, соединяющих соседние адаптеры (системы). Для передачи данных в каждом направлении используется самостоятельная линия. Сегмент линии состоит из передатчика ПД, формирующего электрические сигналы с требуемыми временными и электрическими параметрами, светодиода Сд, преобразующего электрические сигналы в световые, волоконно-оптической линии, по которой передаются световые сигналы, фотодиода Фд; воспринимающего световые сигналы и преобразующего их в электрические, и приемника Пр, формирующего сигналы с заданными временными и электрическими параметрами. Адаптеры подключаются к приемникам и передатчикам и транслируют электрические сигналы в следующие сегменты волоконно-оптического канала. Волоконно-оптические линии сопрягаются с приемопередатчиками, фото- и светодиодами через оптические разъемы ОР.

 

К сигналам, используемым для передачи данных по каналу предъявляются следующие основные требования: помехозащищенность, обеспечение синхронизации приема и передачи данных, максимальной пропускной способности канала и минимальных затрат оборудования в передатчиках, приемниках в канале. Помехозащищенность сигнала проявляется в возможности выделения данных, переносимых сигналом, при наличии помех. Синхронизация обеспечивает различимость битов, передаваемых по каналу. Это означает, что каждый бит представляется сигналом в таком виде, что возможно лишь однозначное его восприятие приемниками, т. е. сигнал, относящийся к одному биту, не может быть пропущен или интерпретирован в виде двух и более бит .данных. Для увеличения пропускной способности и уменьшения затрат оборудования стремятся использовать сигналы минимальной длительности и по возможности более простой формы.

На рис. 6.7 представлены примеры сигналов, используемых для передачи данных в каналах ЛВС. Синхронизация процессов приема и передачи данных наиболее просто реализуется при использовании в моноканале четырехпроводной линии связи. Одна пара проводов служит для передачи синхросигналов, следующих с периодом , а другая – для передачи единичных значений сигналов (рис. 6.7, а). Наличие на одной линии сигнала 1 при отсутствии сигнала на другой воспринимается приемником как 0. Наличие на каждой линия сигнала I воспринимается как 1. Другой порядок использования, линий в моноканале иллюстрируется рис. 6.7, b. Здесь одна линия используется для передачи сигналов 1, а другая – для передачи сигналов 0. Наличие в одном такте   двух сигналов 1 свидетельствует об ошибке в моноканале. В четырехпроводных моноканалах, как правило, используются в качестве передающей среды витые пары с общим или разделенным экраном.

Рис. 6.6. Волоконно-оптический канал.

Рис. 6.7. Сигналы в каналах ЛВС

 

Для уменьшения затрат оборудования в передающей среде каналы строятся по однолинейной схеме – на основе одной витой пары, коаксиального кабеля или волоконно-оптической линии. При использовании электрических сигналов передача единичных и нулевых значений битов может производиться разнополярными сигналами. На рис. 6.7, в значение 1 передается импульсом положительной полярности, а значение G–импульсом отрицательной полярности. При этом биты данных представляются отдельными сигналами, которые синхронизируют процесс передачи данных. Для передачи данных по однолинейному моноканалу однополярными сигналами используется самосинхронизирующийся, так называемый манчестерский код, идеализированная форма сигналов которого изображена на рис. 6.7, г. Значение 1 представляется переключением сигнала, например из 0 в 1, и тогда значение 0 – переключением сигнала из Iв 0. Момент переключения сигнала отмечает середину такта, а направление переключения определяет значение передаваемого бита. В момент первого переключения сигнала приемник запускает систему синхронизации, которая разрешает прием сигнала в промежутке времени , следующем за моментом поступления предыдущего сигнала. Сигнал, поступивший в этом промежутке времени, несет значение бита 0 или 1 и одновременно используется как очередной сигнал синхронизации. На основе его выделяется следующий промежуток времени , в течение которого приемник готов принять очередной бит данных.

Рис. 6.8. Формирование сигнала о столкновении

 

Организация моноканалов. Наиболее существенные аспекты организации моноканала: 1) конфигурация ЛВС; 2) способ доступа к каналу; 3) протоколы управления физическим и информационным каналом. Эффективность организации моноканала характеризуется следующими основными показателями: 1) затратами оборудования в адаптере, зависящими от конфигурации ЛВС и протоколов канального уровня; 2) пропускной способности; 3) средней задержкой передачи данных; 4) надежностью, связанной в первую очередь с сохранением работоспособности моноканала при отказах отдельных адаптеров и систем сети. Значимость показателей эффективности зависит от области применения сети: в сетях персональных ЭВМ наиболее значимым может быть показатель затрат оборудования, а в производственных и бортовых системах – надежность моноканала.

Моноканалы ЛВС строятся из соображений надежности в основном по принципу распределенного управления доступом к каналу, поскольку при централизованном управлении выход из строя контроллера канала является катастрофическим для сети в целом. При распределенном управлении все станции, подключенные к каналу, функционируют одинаковым образом, получая информацию о занятости и освобождении канала только исходя из состояния физического канала. В этом случае для каждой станции канал является равнодоступным средством передачи данных, порядок доступа к которому определяется соответствующим протоколом. Прием данных производится путем селекции – выделения из множества данных тех, которые адресованы конкретной системе.

Различают три основных способа доступа к моноканалу: свободный, управляемый и комбинированный доступ. При свободном (случайном) доступе каждая система захватывает канал для передачи данных в произвольный момент времени. Если две или более системы одновременно передают данные в канал, за счет интерференции сигналов данные искажаются и подлежат повторной передаче, момент которой назначается по специальному, алгоритму. Управляемый (детерминированный) доступ основан на поочередном предоставлении системам разрешения на передачу данных. Комбинированный доступ основан на использовании свободного и управляемого доступа к каналу на разных фазах работы систем. В ЛВС с магистральной структурой наиболее широко используется свободный, а с кольцевой структурой – управляемый доступ.

Свободный доступ с проверкой столкновений (СДПС). Этот способ наиболее широко применяется в магистральных структурах. Система захватывает канал и начинает передачу в любой момент времени. Поскольку централизованное управление отсутствует, две и более системы могут вести передачу пакетов одновременно. В этом случае происходит столкновение – интерференция пакетов, передаваемых одновременно, в результате чего все передаваемые пакеты искажаются. Столкновения обнаруживаются путем приема каждой системой передаваемого ею пакета (рис. 6.8). При этом биты, передаваемые в канал, сравниваются с битами, принимаемыми из канала. Если регистрируется несовпадение переданного и принятого бита, это свидетельствует о столкновении пакетов в канале. При обнаружении столкновения система прекращает передачу пакета и повторяет передачу через некоторое время. Для того чтобы уменьшить вероятность повторных столкновений, каждая система начинает повторную передачу через случайный промежуток времени с достаточно большим средним значением t. Задержка передачи формируется как случайная величина, равномерно распределенная в интервале , где Тmax – максимальная задержка повторной передачи.

Из-за столкновений реальная пропускная способность моноканала оказывается меньше номинальной пропускной способности физического канала. В целях упрощения математических выражений пропускные способности оценивают числом пакетов, передаваемых за время Т, достаточное для передачи одного пакета по физическому каналу. Время передачи одного, пакета по физическому каналу Т называют окном,. Окно T=L[V, где Lдлина пакета (точнее, кадра), бит, и V – пропускная способность физического канала, бит/с. С учетом сказанного пропускная способность моноканала S характеризуется средним числом пакетов, передаваемых в одном окне. Очевидно, что .

 

Пропускная способность моноканала при СДПС оценивается следующим образом. Столкновения исключаются, если в течение периода 2Т, называемого периодом уязвимости, передается только один пакет (рис. 6,9). Если в течение периода уязвимости будет передаваться еще один пакет, который начинается либо в первом окне, либо во втором, происходит столкновение. Для наиболее простой оценки предположим, что поток запросов на передачу создается бесконечным числом систем, работающих независимо друг от друга и в результате этого порождающих пуассоновский поток запросов с суммарной интенсивностью G запросов на одно окно. Вероятность передачи пакета без столкновения определяется вероятностью поступления в период уязвимости только одного пакета и равна . Следовательно, только g-я часть пакетов будет передана без искажений и интенсивность потока неискаженных пакетов.

  (6.1)

Значение S характеризует пропускную способность моноканала, зависимость которой от интенсивности потока запросов Gпредставлена на рис. 6.10 кривой СДПС. Максимум пропускной способности достигается при G=0,5 запросов на окно и составляет

  пакета на одно окно. (6.2)

Таким образом, СДПС позволяет использовать для передачи данных не более 18,4 % пропускной способности канала.

При конечном числе систем М пропускная способность моноканала

  (6.3)

 

Рис. 6.9. Период уязвимости пакета приСДПС

 

Рис. 6.10. Скорость передачи пакетов

 

При   эта зависимость принимает вид (6.1).

Задержка пакетов зависит от числа попыток передачи пакета, от задержки повторной передачи и является случайной величиной. Отношение   характеризует долю пакетов, передаваемых без искажений, т. е: вероятность передачи без столкновений. Число попыток до успешной передачи – геометрически распределенная случайная величина   Величина рn– вероятность передачи пакета с n-й попытки. Среднее число попыток

  (6.4)

и средняя задержка пакета при передаче через моноканал

  (6.5)

где   – средняя задержка повторной передачи.

Обычно значение   представляют в нормированном виде – в числе окон длительностью Т. В таком случае нормированная средняя задержка пакета, определяемая числом окон,

  (6.6)

где   – нормированная задержка повторной передачи.

Обратим внимание на зависимость интенсивности запросов G от задержки передачи: чем меньше , тем больше интенсивность запросов G, поскольку каждая система с уменьшением   начинает чаще обращаться к каналу. Если попытаться уменьшить задержку, интенсивность запросов возрастет и скорость передачи пакетов S будет отставать от скорости запросов на передачу данных. Это приведет к тяжелым последствиям: возрастет число пакетов, ожидающих передачи, увеличится задержка передачи пакетов, а скорость передачи будет уменьшаться до весьма малых значений, в результате чего система потеряет устойчивость. Чтобы избежать этого, необходимо ограничивать интенсивность потока запросов (чтобы она не превышала 0,5 пакета на окно), за счет увеличения задержки на повторную передачу пакета. Более детально устойчивость систем со свободным доступом обсуждается ниже.

 

Таким образом, СДПС приводит к значительней потере пропускной способности канала. Однако этот способ прост в реализации, поскольку обнаружение столкновений и формирование случайной задержки на повторную передачу обеспечивается весьма простыми средствами. Простота реализации приводит к повышению надежности адаптеров, а, следовательно, и моноканала в целом. Существенный недостаток способа – возможность потери устойчивости из-за пульсаций потока запросов на передачу пакетов.

Устойчивость моноканала со свободным доступом. При свободном доступе к каналу зависимость числа пакетов, ожидающих передачи, от скорости передачи пакетов по каналу и средней задержки повторной передачи имеет вид, представленный на рис. 6.11. Скорость передачи пакетов ограничена предельным значением (для СДПС – значением 0,184 пакета на окно). При фиксированной задержке повторной передачи увеличение интенсивности поступления пакетов приводит к увеличению пропускной способности канала. При этом число пакетов т, ожидающих передачи, в том числе и повторной, оказывается незначительным и задержка доставки пакетов также невелика. Однако если в не который момент времени скорость поступления пакетов превысит предельную пропускную способность, канал переходит в режим, при котором число пакетов т, ожидающих передачи, и, следовательно, задержка передачи пакетов принимает большие значения. В этом режиме из-за большого числа пакетов, ожидающих пере дачи, увеличивается вероятность столкновений и с ростом т пропускная способность моноканала падает.

Подпись: Рис. 6.11. Число пакетов в очереди на передачу 


Подпись: Рис. 6.12. Задержка передачи пакетов при ССДПС 

 


Основываясь на представленной зависимости , оценим эффект от пульсации потока запросов на передачу пакетов. Пусть к каналу подключено М систем, из которых пакеты на передачу поступают с интенсивностью S*. При этом каждая система порождает новый пакет с вероятностью . Нагрузку на канал в произвольный момент времени tбудем характеризовать вектором ,где m(t) – число пакетов (систем), ожидающих повторной передачи, и s(t)–скорость поступления новых пакетов, которую будем характеризовать числом пакетов, поступающих для передачи в течение окна. Нагрузка на канал , где   – число новых пакетов, порождаемых   системами, каждая из которых в течение окна может получить пакет с вероятностью а. С увеличением числа пакетов m, ожидающих передачи, скорость поступления новых пакетов   линейно уменьшается, поскольку число систем конечно. Линия , изображенная на рис. 6.11 штрихами, называется линией нагрузки канала. Если в момент времени tскорость поступления новых пакетов s(t)=S*, то нагрузка канала . Если же скорость поступления пакетов упала до нуля, то нагрузка . Пульсация потока пакетов, поступающих в моноканал для передачи, может интерпретироваться перемещением точки (т, S) по линии нагрузки. Точка пересечения линии нагрузки с кривой   называется рабочей точкой канала. При задержке   возникает две рабочие точки   и .

Считается, что канал устойчив, если линия нагрузки пересекает кривую   хотя бы в одной точке, и неустойчив, если они не соприкасаются. Устойчивый режим характеризуется тем, что увеличение числа пакетов, ожидающих передачи, сопровождается увеличением пропускной способности канала, за счет чего очередь будет «рассасываться». При неустойчивом режиме увеличение числа пакетов в очереди на передачу сопровождается снижением пропускной способности канала, в результате чего канал переходит в нерабочее состояние, при котором все М систем хранят пакеты для передачи и из-за столкновений ни один пакет не может быть передан. Из этого состояния сеть может быть выведена только путем внешнего вмешательства.

Из рис. 6.11 видно, что устойчивость канала обеспечивается за счет согласования интенсивности потока пакетов S*, генерируемого системами, спредельной пропускной способностью канала, а также за счет выбора времени задержки повторной передачи. Интенсивность потока пакетов S* должна быть меньше предельной пропускной способности канала, и чем она меньше, тем меньше вероятность потери устойчивости при пульсации нагрузки. Среднюю задержку на повторную передачу следует увеличивать, в результате чего снизится интенсивность повторных передач пакетов при столкновениях.

Синхронный свободный доступ с проверкой столкновений (ССДПС). Способ ССДПС применяется в основном в магистральных структурах. Для уменьшения периода уязвимости работа систем синхронизируется – все системы начинают передачу в один и тот же момент времени. Период синхронизации равен длительности окна Т, используемого для передачи одного пакета. В результате синхронизации период уязвимости уменьшается до одного окна. Если две и более системы начинают передавать пакеты и одном окне, происходит столкновение пакетов, свидетельствующее о невозможности передачи пакетов в текущем окне. После этого каждая система случайным образом вырабатывает задержку . Система повторно передает пакет в окне, следующем через   окон за текущим. Если вновь происходит столкновение пакетов, передача задерживается на   окон и процесс продолжается до выполнения передачи без столкновения.

 

Для ССДПС скорость передачи пакетов по Моноканалу при бесконечном числе систем

  (6.7)

а при числе систем М

  (6.8)

Зависимость (6.7) представлена на рис. 6.10 кривой ССДПС. Максимальная скорость передачи пакетов достигается при G = 1 запрос на окно и составляет

  пакета на окно. (6.9)

Таким образом, при ССДПС пропускная способность моноканала увеличивается в 2 раза по сравнению с СДПС, но составляет менее 37 % пропускной способности физического канала. Средняя задержка передачи пакета определяется по формулам (6.4), (6.5), причем нормированная средняя задержка повторной передачи . Зависимость задержки от скорости передачи пакетов по моноканалу представлена на рис. 6.12.

 

При ССДПС существенно повышается по сравнению с СДПС пропускная способность моноканала, но требуются генератор синхронизирующих сигналов и линии для их передачи, в результате чего увеличиваются затраты, оборудования и снижается надежность моноканала.

Свободный доступ с проверкой несущей (СДПН). Система, имеющая пакет для передачи, перед тем как начать передачу, проверяет состояние моноканала – наличие в нем сигналов, используемых для передачи данных (сигналы несущей частоты, потенциальные или импульсные). Операция проверки состояния канала называется проверкой несущей. Если канал свободен, адаптер системы начинает передачу пакета. Если канал занят, передача откладывается, на время со средним значением, например, Т/2, где Т – время передачи пакета по моноканалу. За счет проверки несущей вероятность столкновений существенно уменьшается (поскольку происходят они только в том случае, если две системы начинают передачу практически одновременно). В результате этого увеличивается степень использования пропускной способности канала, т. е. скорость передачи данных.

 

Скорость передачи данных при СДПН оценивается следующим образом. Предположим, что для всех пар систем сети время распространения сигнала одинаково и равно а. Это время влияет на вероятность столкновения пакетов. Если одна система начинает передачу в момент времени t, а другая система в момент времени , где , происходит столкновение пакетов, поскольку в течение времени, а после начала передачи занятый канал воспринимается: любой системой как свободный. Вероятность того, что ни одна система не начнет передачу в течение интервала а, равна , где   – нормированное время распространения сигнала по моноканалу. Скорость передачи по моноканалу

  (6.10)

При

  (6.11)

Зависимость (6.10) для   и   представлена на рис. 6.10. При малом времени распространения сигнала по каналу   с увеличением интенсивности потока запросов на передачу пакетов G скорость передачи пакетов по моноканалу возрастает, приближаясь к пропускной способности физического канала. Нормированная средняя задержка при передаче пакета

  (6.12)

Проверка несущей реализуется достаточно простой схемой, встраиваемой в сетевой адаптер, и приводит к существенному повышению пропускной способности моноканала. Однако СДПК не исключает возможности столкновения пакетов из-за конечности времени распространения сигналов а, в течение которого две или более системы могут начать передачу пакетов. Последствия столкновения пакетов ликвидируются двумя способами. Во-первых, в адаптеры систем можно встраивать схемы проверки столкновений. В этом случае доступ к каналу осуществляется с проверкой несущей и столкновений (СДПНС). Во-вторых, для ликвидации последствий столкновений можно использовать механизм квитанций и перезапроса. При этом передающая система не контролирует столкновения и возможно искажение пакетов. Принимающая система проверяет поступивший пакет с помощью контрольного суммирования к передаваемой с пакетом проверочной последовательности. Если ошибки в пакете не обнаружены, передающей системе направляется квитанция о приеме пакета. При отсутствии квитанции по истечении тайм-аута передающая система вновь направляет пакет адресату.

Эстафетный доступ. В магистральных структурах эстафетный доступ реализуется по схеме, приведенной на рис. 6.13. Сетевые адаптеры систем, подключенные к моноканалу, связаны кольцевой цепью, по которой между адаптерами передается эстафета – сигнал, разрешающий доступ к моноканалу. Если в адаптере пакет на передачу отсутствует, этот адаптер передает эстафету следующему адаптеру. Если адаптер хранит пакет для передачи, то по прибытии эстафеты адаптер начинает передачу пакета в канал и по окончании передачи пересылает эстафету следующему адаптеру. При эстафетном доступе почти полностью используется пропускная способность канала. Время доставки пакета не превышает NT, где N – число активных систем в сети и – время передачи пакета (кадра) по каналу. Все системы находятся в одинаковых условиях и получают право на передачу с частотой не ниже 1/(NТ).

Рис. 6.13. Эстафетный доступ к каналу в ЛВС с магистральной структурой

 

Рис. 6.14. Структура кадра

 

В кольцевых структурах эстафетный доступ к каналу реализуется с использованием эстафеты – маркёра, последовательно передаваемого по кольцу от одной системы к другой. В качестве маркёра используется специально выделенный для этого разряд пакета – бит в последовательности начала кадра ПНК (рис. 8.14). Если система находится в состоянии готовности к передаче пакета к приходит маркёр, она изымает его из кольца и направляет в канал кадр, пример структуры которого приведен на рис. 6.14. Кадр поступает в следующую систему сети, которая ретранслирует его к очередной системе, и т. д. Каждая система сравнивает свой собственный адрес с адресом получателя, указанным в кадре. Если адреса совпадают, система принимает пакет в свою память и одновременно транслирует его дальше. Факт приема пакета системой отмечается установкой в 1 специального бита приема, выделяемого для этой цели в последовательности конца кадра ПКК. Передающая система находится в состоянии передачи до возвращения в нее отправленного кадра. Принимая ранее переданный кадр, передающая система сравнивает его с хранимым в памяти текстом, анализирует значение бита приема и. установив правильность передачи и факт приема кадра, посылает маркёр следующей системе, которая по получении маркёра имеет право на передачу своего кадра. Если в системе отсутствуют данные для передачи, сна передает маркёр следующей системе сети. Таким образом, маркёр последовательно передается между системами кольца, поочередно предоставляя им право на передачу данных.

При начальном запуске ЛВС необходимо сформировать маркёр. Функция формирования маркёра может быть возложена на одну главную систему или на несколько систем сети. В результате помех, воздействующих на канал, и отказов систем маркёр может быть потерян. Факт потери устанавливается главной системой с помощью тайм-аута, длительность которого равна максимальной продолжительности передачи маркёра по кольцу. Если маркёр потерян, главная система генерирует его повторно в автоматическом режиме или под управлением оператора.

Управление информационным каналом. Информационный канал ЛВС строится на основе физического канала, дополняя последний средствами обеспечения достоверности данных, передаваемых в форме пакетов между узлами ЛВС. Порядок функционирования информационного канала задается протоколом управления, который относится ко второму подуровню уровня 2 (см. рис. 6.2) и определяет формат пакетов, средства контроля данных и исправления ошибок, вносимых в данные при передаче пакета по каналу. В ЛВС используется дейтаграммный способ передачи данных, т е. каждый пакет рассматривается как независимый объект, передаваемый между узлами сети. Пропускная способность моноканала, как правило, превышает потребную для сети, и поэтому нет необходимости в уменьшении размеров служебных полей. В связи с этим в ЛВС обычно используется единственный формат пакета с фиксированным размещением полей, что упрощает процедуры и средства формирования и приема пакетов (кадров). Структура кадра представлена на рис. 6.14. Последовательность начала кадра состоит, как правило, из 2–16 битов, используемых в качестве флага начала пакета и поля управления доступом к моноканалу. Поле данных в различных ЛВС имеет разную длину – обычно от 4 до 128, а в отдельных сетях до 512 байт. Корректность данных, содержащихся в пакете, может контролироваться разными способами: по четности байтов или с использованием 16- и 32-разрядных циклических сумм. В последовательности конца: кадра выделяются поля для кода циклической суммы, признака доставки пакета, признака продолжения сообщения в следующем пакете и др.

Система, принимающая пакет, проверяет его корректность с помощью средств контроля достоверности данных. При обнаружении ошибки в пакете данных производится повторная передача пакета в порядке, определяемом протоколом управления информационным каналом, например с использованием квитанции и тайм-аута. В кольцевых сетях пакет возвращается отправителю с отметкой о приеме, т. е, несет в себе квитанцию об успешном приеме. Если отметка о приеме отсутствует, система повторно передает пакет и выполняет это действие заданное число раз, определенное протоколом. Если попытки доставить пакет оказываются безуспешными, фиксируется неработоспособность (недоступность) адресата и взаимодействие прекращается. В магистральных сетях прием подтверждается квитанцией. При отсутствииквитанции производится повторная передача пакета по истечении тайм-аута.

Машиностроительное черчение, инженерная графика, начертательная геометрия. Выполнение контрольной