Основы вычислительных систем Курс лекций начало

 

6.1. Структура и характеристики.

 

Для создания крупномасштабных систем обработки данных ЭВМ и вычислительные комплексы, обслуживающие отдельные предприятия и организации, объединяются с помощью средств передачи данных в вычислительные сети, обеспечивающие отрасли производства и регионы,

Структура. Структура вычислительной сети представлена на рис. 6.1. Вычислительная сеть разделяется на три взаимосвязанные подсети: базовую сеть передачи данных (СПД), сеть ЭВМ и терминальную сеть.

Базовая СПД – совокупность средств для передачи данных между ЭВМ. Сеть передачи данных состоит из линий связи и узлов связи. Узел связи – совокупность средств коммутации и передачи данных в одном пункте. Узел связи принимает данные, поступающие по каналам связи, и передает данные в каналы, ведущие к абонентам. Узел связи реализуется на основе коммутационной ЭВМ и аппаратуры передачи данных. Коммутационная ЭВМ управляет приемом и передачей данных и, в частности, выбирает целесообразный путь передачи данных. Базовая СПД является ядром вычислительной сети, обеспечивающим физическое объединение ЭВМ и прочих устройств.

Сеть ЭВМ – совокупность ЭВМ, объединенных сетью передачи данных. Сеть ЭВМ включает в себя главные и терминальные ЭВМ. Главная ЭНМ (ГВМ) выполняет задания абонентов сети – пользователей. Терминальные ЭВМ (ТВМ) предназначены для сопряжения терминалов с базовой СПД. Основная функция сопряжений сводится к преобразованию данных и форму, обеспечивающую их передачу средствами базовой сети и вывод данных на терминалы.

Терминальная сеть – совокупность терминалов в терминальной сети передачи данных. Терминалы – устройства, с помощью которых абоненты осуществляют ввод и вывод данных. В терминальной сети могут использоваться интеллектуальные терминалы и абонентские пункты. В состав интеллектуального терминала входит процессор, обеспечивающий локальную обработку данных – редактирование текстов, отображение данных в специальной форме, хранение данных и манипуляции с ними и т. д. Абонентский пункт состоит из взаимосвязанных устройств ввода – вывода, обеспечивающих ввод данных от нескольких источников и вывод данных в различной форме – на экраны дисплеев, печатающие устройства, устройства вывода графической информации и др. Для подключения терминалов к ЭВМ используются линии связи и обслуживающие их удаленные мультиплексоры передачи данных, в совокупности образующие терминальную сеть передачи данных.

Контроль состояния вычислительной сети и управление ее функционированием обеспечивается административной системой, включающей в себя ЭВМ, терминальное оборудование и программные средства, с помощью которых производится включение и выключение сети и ее компонентов, контролируется работоспособность сети, устанавливаем режим функционирования компонентов, систем и сети в целом, учитывается объем услуг, предоставляемых абонентам сетью, и т. д.

Отдельные вычислительные сети могут быть связаны между собой с помощью линий связи, подключаемых к узлам межсетевой связи. В узле межсетевой связи используется ЭВМ, обеспечивающая согласование и преобразование данных при передаче их между двумя тетями.

Рис 6.1. Структура вычислительной сети

 

Эффект сетевой обработки данных. Основной эффект от объединения ЭВМ и терминалов в вычислительную сеть – это полная доступность ресурсов сети для пользователей. Пользователи, подключенные к сети, имеют доступ ко всем главным ЭВМ, входящим в сеть, и, следовательно, имеют возможность использовать память этих ЭВМ для хранения данных и процессоры для их обработки. Пользователям доступно программное обеспечение, имеющееся в сети, и базы данных, размещенные в ЭВМ сети, что позволяет оперативно использовать программы и базы данных. Как правило, сети предоставляют возможность параллельной обработки данных многими ЭВМ. Возможно построение распределенных баз данных, размещенных в памяти многих ЭВМ, а за счет этого – создание сложных информационных структур. Информационные связи между пользователями позволяют коллективам пользователей решать задачи моделирования сложных систем, выполнять проектные и другие работы, опирающиеся на распределенные между многими ЭВМ программное обеспечение и базы данных. Таким образом, сетевая обработка данных – качественно новая организация обработки: в значительной степени увеличивается предел сложности и скорость решения задач, требующих участия больших коллективов работников.

Вычислительные сети позволяют повысить уровень загрузки ЭВМ, программного обеспечения и баз данных. Это обусловлено двумя факторами. Во-первых, вычислительная сеть обслуживает большое число пользователей, поэтому нагрузка, создаваемая всеми пользователями, в меньшей степени подвержена колебаниям, чем нагрузка, создаваемая отдельным пользователем или группой. Этот эффект имеет статистическую природу и оценивается дисперсией среднего значения нагрузки, создаваемой пользователями. Так, если среднее квадратическое отклонение нагрузки, создаваемой одним пользователем, равно а, то и пользователей создают суммарную нагрузку, среднее квадратическое отклонение которой равно , т. е. колебания нагрузки, создаваемой, например, 100 пользователями, в 10 раз меньше, чем у создаваемой одним пользователем. Следовательно, увеличивается вероятность того, что в каждый момент времени существует работа для каждого компонента сети, т. е. увеличивается загрузка ресурсов сети. Второй фактор, позволяющий повысить уровень загрузки, – стабилизация нагрузки на сеть, когда сеть охватывает территорию, расположенную в нескольких часовых поясах. Эффект стабилизации особенно существен для эксплуатации специализированных и проблемно-ориентированных ЭВМ (ЭВМ с матричными процессорами), аналого-цифровых вычислительных комплексов, информационно-справочных систем и др.

Как показывает практика, за счет расширения возможностей обработки данных и лучшей загрузки ресурсов стоимость обработки данных средствами сети снижается в полтора раза и более, по сравнению с обработкой данных на несвязанных ЭВМ.

Характеристики. Основные характеристики вычислительной сети – операционные возможности, время доставки сообщении, производительность и стоимость обработки данных.

Операционные возможности сети – перечень основных действий по обработке данных. Главные ЭВМ, входящие в состав сети, обеспечивают пользователей всеми традиционными видами обслуживании, средствами автоматизации программирования, доступом к пакетам прикладных программ, базами данных и т. д. Наряду с этимвычислительная сеть может предоставлять пользователям следующие дополнительные виды услуг:

1)                 удаленный ввод заданий – выполнение заданий, поступающих с любых терминалов, на любой главной ЭВМ в пакетном или диалоговом режиме;

2)                 передачу файлов (наборов данных) между ЭВМ сети;

3)                 доступ к удаленным файлам – обработку файлов, хранимых в удаленных ЭВМ;

4)                 защиту данных и ресурсов от несанкционированною доступа;

5)                 передачу текстовых и, возможно, речевых сообщений между терминалами (пользователями);

6)                 выдачу, справок об информационных и программных ресурсах;

7)                 распределенные базы данных, размещаемые в нескольких ЭВМ;

8)                 распределенную обработку – параллельное выполнение задачи несколькими ЭВМ.

 

Как минимум в сетях реализуются первые шесть видов дополнительных услуг. Работа с распределенными базами данных и распределенная обработка обеспечиваются только в наиболее развитых вычислительных сетях.

Производительность сети представляет собой суммарную производительность главных ЭВМ. При этом обычно производительность главных ЭВМ означает номинальную производительность их процессоров.

Время доставки сообщений определяется как статистическое среднее времени от момента передачи сообщения в сеть до момента получения сообщения адресатом.

Цена обработки данных формируется с учетом стоимости средств, используемых для ввода – вывода, передачи, хранения и обработки данных. На основе цен рассчитывается стоимость обработки данных, которая зависит от объема используемых ресурсов вычислительной сети (количество передаваемых данных, процессорное время), а также режима передачи и обработки данных.

Указанные характеристики зависят от структурной и функциональной организации сети, т. е. от набора параметров, основные из которых: структура вычислительной сети (состав ЭВМ, структура базовой СНД и терминальной сети), метод передачи данных в базовой сети, способы установления соединений между взаимодействующими абонентами, выбора маршрутов передачи данных и т. д. Кроме того, характеристики сети зависят or нагрузки, создаваемой пользователями. Нагрузка определяется числом активных терминалов (пользователей) и интенсивностью взаимодей

 

пускной способности канала и, возможно, скорости формирования и анализа специальных кодовых последовательностей, характеризующих состояние канала. Протокол УФК вводит интерфейс, устанавливающий стандартный для всех систем порядок взаимодействия с каналом.

На рисунке уровень 2 разделен на два подуровня: 2.1 – управление доступом к каналу; 2.2 – управление информационным каналом. Порядок функционирования этих подуровней регламентируется одноименными протоколами УДК. и УИК. Протокол УДК устанавливает процедуру передачи данных через канал, коллективно используемый системами, и процедуру селекции данных, передаваемых по каналу. Протокол УИК устанавливает порядок обеспечения достоверности данных при передаче через физический канал, подверженный воздействию помех: формируются проверочные коды при передаче данных, а также в пункте приема (проверка корректности принимаемых данных), и при обнаружении- искажения передача данных повторяется. В большинстве ЛВС отсутствует необходимость в сетевом уровне управления, поэтому на рисунке этот уровень не выделен. Необходимость в этом уровне появляется при комплексировании нескольких ЛВС, содержащих моноканалы. Однако и в этом случае функции сетевого уровня оказываются, как правило, достаточно простыми.

На транспортном уровне протокол управления передачей (УП) обеспечивает единый транспортный интерфейс для процессов высокого уровня. Транспортный уровень ликвидирует, различия между потребностями процессов в обмене данными и ограниченными возможностями информационного канала, организуемого нижними уровнями управления. За счет этого при программировании прикладных процессов нет необходимости учитывать специфику функционирования моноканала.

Протоколы высокого уровня – управления сеансами (УС), представлением данных (УПД) и прикладными процессами (УПП) – по своим функциям аналогичны соответствующим протоколам глобальных сетей. В ЛВС на представительском уровне реализуется доступ терминалов к процессам, программ к удаленным файлам, передача файлов, удаленный ввод заданий, обмен графической информацией и др.

При использовании моноканала сложность процедур управления на физическом, канальном и транспортном уровне невелика. Поэтому эти уровни управления удается эффективно реализовать в основном техническими средствами – специальным контроллером, называемым сетевым адаптером (станцией) ЛВС. Адаптер сопрягает внутреннюю магистраль или интерфейс ввода – вывода ЭВМ или другой системы сети с последовательным интерфейсом. По существу адаптер в совокупности с физическим каналом образует информационный моноканал (рис. 6.3), к которому подключаются системы сети, выступающие в этом случае в качестве абонентов моноканала. Сетевые адаптеры реализуют, во-первых, сетевые функции – управление физическим каналом, информационным каналом и передачей и, во-вторых, интерфейсные функции – подключение адаптера к интерфейсу системы, как правило, параллельному.

Локальные вычислительные сети используются для комплексирования в основном микро- и мини-ЭВМ. На рис. 6.4, а представлена типичная конфигурация ЛВС, предназначенной для расширения возможностей персональных ЭВМ (ПЭВМ). Здесь используются простейшие персональные ЭВМ, состоящие из микро-ЭВМ и дисплея. Вычислительные возможности персональных ЭВМ расширяются путем подключения их к НМД и системным устройствам вывода – АЦПУ и графопостроителям (ГП) используемым в режиме коллективного доступа. За счет этого, каждый пользователь имеет возможность работать с большими наборами данных, размещаемыми вне персональных ЭВМ, и высокоскоростными устройствами вывода.

Рис. 6.3. Организация моноканала

 

Рис. 6.4. Состав ЛВС

 

На рис. 6.4, б представлена более мощная сеть, состоящая и: персональных ЭВМ, оснащенных дисплеем, накопителем на гибких магнитных дисках (НГМД) и печатающим устройством, и мини-ЭВМ предоставляющих пользователям значительные вычислительные возможности и базы данных, размещаемые в НМД. Стоимость средств подключения к сети (сетевого программного обеспечения систем и адаптеров) оказывается значительно ниже стоимости ресурсов, предоставляемых пользователям от сети. Этим обусловлена эффективность ЛВС. Кроме того, объединение ЭВМ в сеть позволяет решать более сложные задачи и создает качественно новые условия для параллельной обработки, данных коллективами пользователей ЛВС. Отказы в отдельных системах не приводят к отказу сети в целом. Поэтому ЛВС обладают более высокой надежностью, чем системы обработки данных такой же мощности, построенные на основе единственной ЭВМ с подключенным к ней терминальным оборудованием.

Область применения ЛВС чрезвычайно обширна: системы автоматизации проектирования и технологической подготовки производства, управления производством и технологическими комплексами, конторские системы, бортовые системы управления и др. Системы автоматизации проектирования и технологической подготовки производства, а также конторские (системы управления снабжением, сбытом, складами, распределением транспорта, системы перечисления платежей и др.) обеспечивают высокую информативность за счет концентрации данных в едином комплексе и оперативного доступа к данным и средствам их обработки.

Локальные сети являются эффективным способом построения сложных систем управления производственными участками, цехами и предприятиями. В таких системах для управления станками с ЧПУ, промышленными роботами, автоматическими транспортными и складскими средствами используются, как правило, микро-ЭВМ. Системы управления производственными подразделениями связываются с системами автоматизации проектирования, технологической подготовки производства и административного управления производством, образуя интегрированные производственные комплексы, решающие всю совокупность задач подготовки высокоавтоматизированного производства и управления им. В бортовых системах управления использование моноканала для сопряжения датчиков, устройств отображения и ЭВМ, решающих локальные задачи управления и контроля, позволяет значительно уменьшить число соединений и координировать работу многих подсистем, в результате пего снижается стоимость системы управления и повышается качество управления судами, самолетами и другими объектами.

Основы вычислительных систем
Учебный центр атомной энергетики

Машиностроительное черчение, инженерная графика, начертательная геометрия. Выполнение контрольной