Основы вычислительных систем Курс лекций начало

5.2. Каналы связи

 

Основные характеристики канала связи (рис. 5.2) – пропускная способность и достоверность передачи данных. Пропускная способность канала оценивается предельным числом бит данных, передаваемых по каналу за единицу времени, и измеряется в бит/с (с-1). Достоверность передачи данных характеризуется вероятностью искажения бита, которая для каналов связи без дополнительных средств защиты от ошибок составляет, как правило, 10-4 – 10-6. Основная причина искажений – воздействие помех на линию связи и, отчасти, наличие шумов в АПД. Помехи носят импульсный характер и имеют тенденцию к группированию – образованию пачек помех, искажающих сразу группу соседних бит в передаваемых данных.

Линии связи. Для передачи данных используются линии связи различных типов: проводные (воздушные), кабельные, радиорелейные, волоконно-оптические и радиоканалы наземной и спутниковой связи. Кабельные линии состоят из скрученных пар проводов или коаксиальных кабелей. Основные характеристики линий связи – полоса частот, удельная стоимость и помехоустойчивость. Полоса частот   определяет диапазон частот , где fн и fв – нижняя и верхняя граница частот, эффективно передаваемых по линии. Полоса частот зависит от типа линии и ее протяженности. Проводные линии связи имеют полосу частот примерно 10 кГц, кабельные – 102 кГц, коаксиальные – 102 МГц, радиорелейные – 103 МГц и волоконно-оптические – 102 МГц. Для передачи данных используется коротковолновая радиосвязь с диапазоном частот от 3 до 30 МГц. Удельная стоимость линии определяется затратами на создание линии протяженностью 1 км. Для передачи данных на небольшие расстояния используются в основном низкочастотные проводные линии, на большие расстояния – высокочастотные линии: коаксиальные кабели, волоконно-оптические и радиорелейные линии. Радиосвязь применяется для организации как местной, так и дальней связи. Помехоустойчивость линии зависит от мощности помех, создаваемых в линии внешней средой или возникающих из-за шумов в самой линии. Наименее помехоустойчивыми являются радиолинии, хорошей помехоустойчивостью обладают кабельные липни и отличной – волоконно-оптические линии, не восприимчивые к электромагнитному излучению.

Рис. 5.4. Последовательность двоичных сигналов

 

Пропускная способность канала. Пропускная способность канала зависит от полосычастот линии связи и отношения мощностей сигнала и шума. Максимальная пропускная способность канала, настроенного на основе линии с полосой частот F и отношением сигнал-шум Рс/Рш, составляет (бит в секунду)

  (4.1)

Значение (1+ Рс/Рш) определяет число уровней сигнала, которое может быть воспринято приемником. Так, если отношение Рс/Рш>3, то единичный сигнал может переносить четыре значения, т. е.   бита информации.

При передаче данных широко используются двоичные сигналы, принимающие значения 0 и 1. Временная диаграмма последовательности таких сигналов, передаваемых по линии связи, изображена на рис. 5.4, где сверху указаны значения, переносимые сигналом. Минимальная длительность такта, с которым могут передавался сигналы по каналу с полосой частот F, равна . Если вероятность искажения символов 0 и 1 из-за помех одинакова и равна р, то число двоичных символов, которые можно безошибочно передать по каналу в секунду,

  (4.2)

Это выражение определяет пропускную способность двоичного канала. Величина в квадратных скобках определяет долю двоичных символов, которые передаются по каналу с частотой 2F без искажений. Если помехи отсутствуют, вероятность искажения символа   и пропускная способность ; если вероятность искажения р=0,5, то пропускная способность С=0. Если по каналу передается сообщение длиной n двоичных символом, то вероятность появления в нем точно l ошибок , среднее число ошибок   и среднее квадратическое отклонение .

Наиболее распространенный тип капала – телефонный с полосой пропускания 3,1 кГц и диапазоном частот от fН =0,3 кГц до fН = 3,4 кГц. Коммутируемый телефонный канал обеспечивает скорость передачи данных С=1200 бит/с, а некоммутируемый – до 9600 бит/с.

Эффективность использования канала связи для передачи данных принято характеризовать удельной пропускной способностью , т. е. пропускной способностью на 1 Гц полосы частот канала. Для коммутируемых телефонных каналов удельная пропускная способность не превышает 0,4 бит/(с × Гц), а для некоммутируемых составляет, как правило. 3–5 бит/(с × Гц).

Стандартизированы следующие скорости передачи данных по каналам связи: 200, 300, 600, 1200, 2400, 4800, 9600, 12000, 24000, 48000 и 96000 бит/с. Каналы с пропускной способностью до 300 бит/с называются низкоскоростными, от 600 до 4800 бит/с – среднескоростными и с большей пропускной способность – высокоскоростными.

 

Способы передачи данных. Для передачи данных по каналам с различными характеристиками используются разные способы, обещающие максимальное использование свойств каналов для повышения скорости и достоверности передачи данных при умеренной стоимости аппаратуры.

Данные первоначально предоставляются последовательностью прямоугольных импульсов (рис. 5.4). Для их передачи без искажения требуется полоса частот от нуля до бесконечности. Реальные каналы имеют конечную полосу частот, с которой необходимо согласовать передаваемые сигналы. Согласование обеспечивается, во-первых, путем модуляции – переноса сигнала на заданную полосу частот и, во-вторых, путем кодирования – преобразовании данных в вид, позволяющий обнаруживать и исправлять ошибки, возникающие из-за помех в канале связи.

При использовании высокочастотных проводных и кабельных линий, полоса частот которых начинается примерно от нуля, сигналы можно передавать в их естественном виде – без модуляции (в первичной полосе частот). Каналы, работающие без модуляции, называются телеграфными и обеспечивают передачу данных со скоростью, как правило, 50-200 бит/с.

 

Рис. 5.5. Канал с модуляцией

 

Когда канал имеет резко ограниченную полосу частот, как, например, радиоканал, передача сигналов должна выполняться в этой полосе и перенос сигнала в заданную полосу производится посредством модуляции по схеме, изображенной на рис. 5.5. В этом случае между оконечным оборудованием данных, работающим с двоичными сигналами, и каналом устанавливается modem – модулятор и демодулятор. Модулятор перемещает спектр первичного сигнала в окрестность несущей частоты f0. Демодулятор выполняет над сигналом обратное преобразование, формируя из модулированного сигнала импульсный двоичный сигнал.

Рис. 5.6. Способы модуляции

 

Способы модуляции подразделяются на аналоговые и дискретные. К аналоговым относятся амплитудная, частотная и фазовая модуляция (рис. 5.6). При амплитудной (рис. 5.6, б) производится модуляция амплитуды несущей частоты первичным сигналом (рис. 5.6, а). При частотной модуляции (рис. 5.6, в) значения 0 и 1 двоичного сигнала передаются сигналами с различной частотой – f0 и f1. При фазовой модуляции (рис. 5.6, г) значениям сигнала 0 и 1 соответствуют сигналы частоты f0 с разной фазой. Дискретные способы модуляции применяются для преобразования аналоговых сигналов, например речевых, в цифровые. Для этих целей наиболее широко используются амплитудно-импульсная, кодово-импульсная и времяимпульсная модуляция.

Кодирование передаваемых данных производится в основном для повышения помехоустойчивости данных. Так, первичные коды символов могут быть представлены в помехозащищенной форме – с использованием кодов Хемминга, обеспечивающих обнаружение и исправление ошибок в передаваемых данных. В последнее время функция повышения достоверности передаваемых данных возлагается на оконечное оборудование данных и обеспечивается за счет введения информационной избыточности в передаваемые сообщения.

 

Аппаратура передачи данных. Основное назначение АПД – преобразование сигналов, поступающих с оконечного оборудования, для передачи их в полосе частот канала связи и обратное преобразование сигналов, поступающих из канала. При работе с телеграфным каналом, сигналы по которому передаются без модуляции (в первичной полосе частот), указанные функции реализуются устройством преобразования телеграфных сигналов, а при работе с телефонным и высокочастотным каналом – модемом. Основные элементы модулятора и демодулятора представлены на рис. 5.7. В рассматриваемом случае передача данных в канал производится синхронно с частотой, соответствующей скорости работы канала, например с частотой 1200 Гц. Сигналы синхронизации SТ формируются в модуляторе тактовым генератором ТГ. По каждому сигналу синхронизации ST в блок модуляции БМ вводится двоичный сигнал Т, представляющий собой бит данных. Несущая частота формируется генератором ГНЧ. Модулированный сигнал поступает на полосовой фильтр ПФ, ограничивающий полосу частот сигнала в соответствии с нижней и верхней границей полосы канала. Затем сигнал с заданной полосой частот передается по каналу в демодулятор, проходит через полосовой фильтр, выделяющий заданную полосу частот, и поступает в блок демодуляции.

 

Рис. 5.7. Модулятор и демодулятор

 

БДМ, на входе которого формируются двоичные сигналы. Эти сигналы используются для выделения тактовой частоты, с которой передаются данные. Тактовая частота в демодуляторе формируется синхронизируемым тактовым генератором (СТГ), фаза и частота которого автоматически подстраиваются под фазу и частоту сигналов, поступающих с БДМ. Сигналы синхронизации SR поступают на регенератор сигналов PC, который формирует прямоугольные импульсы, представляющие собой биты данных со значением 1, и, кроме того, используются аппаратурой обработки данных для синхронизации приема данных из демодулятора. Диаграммы сигналов в демодуляторе представлены на рис. 5.8.

Описанный канал связи называется синхронным. В нем передача и прием данных производится с постоянной тактовой частотой, одинаковой на входе и выходе канала. Синхронизм передающего и принимающего оборудования канала обеспечивается автоматически за счет подстройки частоты генератора тактов в демодуляторе. Принимаемые сигналы сдвинуты относительно передаваемых по фазе на величину, определяемую временем распространения сигнала по каналу связи.

В зависимости от направления передачи данных каналы подразделяются на симплексные, полудуплексные и дуплексные. Симплексный канал позволяет передавать данные только в одном направлении – прямом или обратном – один абонент передает, а другой принимает данные. Полудуплексный канал обеспечивает поочередную передачу данных в двух направлениях поочередно. Модемы на каждом конце канала устанавливаются в состояние приема или передачи с помощью сигналов управления. Дуплексный канал позволяет передавать данные одновременно в двух направлениях. Это обеспечивается за счет использования четырехпроводной линии связи (два провода служат для передачи, а два других – для приема данных), или двух полос частот.

Рис. 5.8. Сигналы в демодуляторе

 

Таблица 5.1. Характеристики модемов ЕС ЭВМ

Обозначение

Тип канала

Режим работы канала

Пропускная способность основного канала,

бит/с

Пропускная способность обратного канала, бит/с

Модем-200 ЕC-8001

ТфК, ТфНК

Д, ПД

200

Модем-1200 ЕС-8006

ГфК, ТфНК

Д, ПД

600, 1200

75

Moдем-2400 ЕC-8011

ТфНК

Д, ПД

1200, 2400

75

Модем-4800 ЕC-8015

ТфНК

Д

2400, 4800

75

Модем-4800 ЕС-8019

Широкополосный

Д

2400, 4800

75

 

Примечание. ТфК и ТфНК – телефонный коммутируемый и некоммутируемый канал; Д и ПД – дуплексный и полудуплексный режим.

 

Для повышения достоверности передачи данных основной канал может снабжатьсядополнительным вспомогательным каналом небольшой пропускной способности – обратным каналом. Например, при скорости передачи 1200 бит/с обратный канал работает со скоростью 75 бит/с. Такой канал создастся выделением в полосе частот дополнительного канала с неширокой подполосой, используемой для передачи служебной информации в обратом направлении. По обратному каналу передаются сигналы, подтверждающие прием блоков данных. Если в принятом блоке обнаружена ошибка, то посылается сигнал на повторную передачу этого блока.

Характеристики типичных модемов, выпускаемых в рамках ЕС ЭВМ, приведены в табл. 5.1.

В состав АПД может включаться устройство защиты от ошибок (УЗО), обеспечивающее повышение достоверности данных путем обнаружения и исправления возникающих при передаче ошибок. Однако в настоящее время функции защиты от ошибок возлагаются, как правило, на оконечное оборудование данных – ЭВМ, мультиплексоры передачи данных и программируемые абонентские пункты. Применяются УЗО в редких случаях – лишь при подключении к каналу связи терминального оборудования, не имеющего средств для логической обработки данных.

Для работы с коммутируемыми каналами телефонной и телеграфной сети на АПД возлагается функция установления соединения с абонентом. Эта функция может выполняться ручным или автоматическим способом. При ручном способе вызова соединение в телефонной сети устанавливается с помощью телефонного аппарата (рис, 5.9, а). После этого переключатели «телефон – данные» устанавливаются в положение «данные», подключая к каналу модемы. Для того чтобы уменьшить время создания соединения, АПД снабжается автоматическим вызывным устройством (АВУ) (рис. 5.9, б), которое получает от оконечного оборудования данных (от ЭВМ) номер вызываемого абонента, преобразует номер в сигналы тональной частоты и принимает ответ вызываемой стороны. В процессе вызова абонента принимает участие ЭВМ, мультиплексор передачи данных, АВУ и абонентский пункт, на котором устанавливаемся автоответчик.

Рис. 5.9. Установление соединений через коммутируемый канал

 

Интерфейсы АПД. Для унификации технических средств телеобработки, в частности АПД, проведена стандартизация интерфейсов: АПД – линия (канал) связи и АПД – оконечное оборудование данных. Состав интерфейсов представлен на рис. 5.10. Интерфейс (стык) С1 устанавливает логические и электрические аспекты сопряжения АПД с каналами связи и для телефонных каналов определяются отраслевым стандартом ОСТ4 ГО.208.004. Абонентский интерфейс С2 (ГОСТ 18145-81) между АПД и ООД определяется рекомендацией Международного консультативного комитета по телеграфии и телефонии(МККТТ) V.24, которая устанавливает логические, электрические и конструктивные элементы сопряжения модемов и АВУ с ООД. Для сопряжения модемов с ООД используется 34 линии с номерами 101 – 134, а для сопряжения АВУ с ООД – 13 линий с номерами 201 – 213. Интерфейс С3 определяет подключение УЗО к ООД и установлен стандартом ГОСТ 18146–72. Интерфейс С3 отличается от интерфейса С2 наличием цепей для параллельной передачи данных по пяти – восьми линиям и отсутствием цепей синхронизации и управления вызывными устройствами.

Рис. 5.10. Интерфейсы ЛПД

Машиностроительное черчение, инженерная графика, начертательная геометрия. Выполнение контрольной