Лекции по термодинамике

Примеры решения задач
контрольной работы
Электротехника
Общая электротехника
Примеры решения задач
Физика
Методичка
Лекции и конспекты
Лабораторные работы
Телевидение лабораторные
Расширенный конспект лекций
по курсу «Физика»
Примеры решения задач по физике
Измерительные системы
Лекции по термодинамике
Двигатели внутреннего сгорания
Механика, термодинамика
Атомная энергетика
Атомные электрические станции
Описание реакторной установки
Реакторы типа РБМК-1000
Физические принципы атомной энергетики
Черчение
Инженерная графика
Сопромат
Выполнение курсовой работы по сопромату
Машиностроительное черчение
Архитектурные стили
Французский стиль в русской архитектуре
Искусство борокко
Готика Франции
Эпоха Возрождения
Романский стиль
Художественная роспись тканей
Ручная роспись тканей
Роспись тканей в Японии
Декоративное искусство Японии
Японские мотивы в тканях модерна
Холодный батик
Математика
Дифференциальные уравнения
Ряды
Интегралы
Примеры вычисления интегралов
Элементарная математика
Высшая математика -
лекции , примеры решения задач
Информатика
Информационная безопасность
Модели управления доступом
Разграничение доступа
Вычислительные комплексы
Учебник по информатике
Общие принципы построения
вычислительных сетей
Основы передачи дискретных данных
Базовые технологии локальных сетей
Построение локальных сетей по
стандартам физического
и канального уровней
Сетевой уровень
Глобальные сети
Средства анализа и управления сетями
Почтовые программы
Примеры скриптов на JavaScript
Примеры программирования на Java
Иллюстрированный самоучитель по Java

Основные представления молекулярно-кинетической теории вещества.

Диффузию в газах можно наблюдать если сосуд с пахучим газом открыть в помещении.

Моль – это количество вещества, содержащее столько же частиц, сколько содержится атомов углерода в 0,012 кг углерода.

Возникает закономерный вопрос: какова масса одного моля вещества. Это уже зависит от самого вещества.

Микро- и макропараметры системы Техническая термодинамика (т/д) рассматривает закономерности взаимного превращения теплоты в работу.

Агрегатные состояния Всякое вещество может находиться в трёх агрегатных состояниях: в твёрдом, жидком и газообразном. Протонно-нейтронная структура ядра Спин, магнитный и электрический моменты ядер

Термодинамика Распределение Максвелла

Руководство к лабораторным работам Экспериментальные данные о спектрах излучения Ремонт мебели техника для медицины

Распределение Больцмана В присутствии гравитационного поля (или, в общем случае, любого потенциального поля) на молекулы газа действует сила тяжести.

Универсальное уравнение состояния идеального газа. Идеальным газом называется такой газ, у которого отсутствуют силы взаимного притяжения и отталкивания между молекулами и пренебрегают размерами молекул.

Давление Давление определяется силой, с которой газ давит на единицу площади стенки сосуда.

Шкала Фаренгейта применяется в некоторых странах (Англия, США) до сих пор. После Фаренгейта были предложены многие другие шкалы и конструкции термометров. >

Изопроцессы Следует отметить, что задолго до того, как уравнение состояния идеального газа было теоретически получено на основе молекулярно-кинетической модели, закономерности поведения газов в различных условиях были хорошо изучены экспериментально.

Зависимость между плотностью газа и его давлением Вспомним, что плотностью вещества называется масса, заключенная в единице объема.

Закон Шарля с точки зрения молекулярной теории Что происходит в микромире молекул, когда температура газа меняется, например когда температура газа повышается и давление его увеличивается?

Изобарным процессом называют процесс, протекающий при неизменным давлении p.

Если поршень свободен, то нагреваемый газ будет расширяться, при постоянном давлении такой процесс называется изобарическим (P=const), идущим при постоянном давлении .

Закон Дальтона До сих пор мы говорили о давлении какого-нибудь одного газа — кислорода, водорода и т. п.

Парциальное давление Парциальное давление – это давление, которое имел бы каждый газ, входящий в состав смеси, если бы этот газ находился один в том же количестве, в том же объеме и при той же температуре, что и в смеси.

Для универсальной газовой постоянной имеем  соотношение RГде: R - удельная газовая постоянная смеси, - молярная масса смеси.

Понятие теплоемкости. Когда одинаковое количество энергии передано телам равной массы, но состоящих из разных веществ, то повышение температуры этих тел неодинаково.

Значения теплоемкостей колеблются в довольно широких пределах. Кроме того, теплоемкости всех тел, как правило, уменьшаются с падением температуры и при температурах, близких к абсолютному нулю, принимают ничтожно малые значения.

Газовая постоянная универсальная Газовая постоянная универсальная (молярная) (R) фундаментальная физическая константа, входящая в уравнение состояния 1 моля идеального газа: $pv=RT$.

Работой называется такая пеpедача энеpгии, котоpая обусловлена силой. Силы могут иметь pазличное пpоисхождение, поэтому и pабота в теpмодинамике может быть pазличной по своей физической пpиpоде.

Работа численно равна площади под графиком процесса на диаграмме (p, V). Величина работы зависит от того, каким путем совершался переход из начального состояния в конечное.

Обратимые и необратимые процессы Процессы, изображенные на рис. 3.8.2, можно провести и в обратном направлении; тогда работа A просто изменит знак на противоположный.

Первый закон термодинамики На рис.  условно изображены энергетические потоки между выделенной термодинамической системой и окружающими телами.

Изохорный процесс В изохорном процессе (V = const) газ работы не совершает, A = 0. Следовательно, Q = ΔU = U(T2) – U(T1).

Изотермический процесс Первый закон термодинамики для изотермического процесса выражается соотношением Q = A.

В термодинамике выводится уравнение адиабатического процесса для идеального газа. В координатах (p, V) это уравнение имеет вид pVγ = const.

Это соотношение называют уравнением Пуассона.

Теплоёмкость газа Теплоемкость, так же как и количество переданной телу теплоты, зависит от того, каким образом, а точнее при осуществлении какого процесса, теплота передавалась этому телу.

Закон сохранения энергии в термодинамике Первый закон термодинамики – закон сохранения энергии для тепловых процессов – устанавливает связь между количеством теплоты Q, полученной системой, изменением ΔU ее внутренней энергии и работой A, совершенной над внешними телами:

Второй закон термодинамики по своим формулировкам неоднократно дополнялся за более чем полутора-вековое существование науки – термодинамики.

Понятие о круговом процессе Круговой процесс или цикл – это совокупность процессов, в результате которых система возвращается в исходное состояние.

Ремонт мебели техника для медицины